1. Resilience and restoration of tropical and subtropical grasslands, savannas, and grassy woodlands
- Author
-
Gerhard E. Overbeck, William J. Bond, G. Wilson Fernandes, Grégory Mahy, Alessandra Fidelis, Swanni T. Alvarado, Julia-Maria Hermann, Fernando A. O. Silveira, Elise Buisson, Nicholas P. Zaloumis, Soizig Le Stradic, Joseph W. Veldman, and Giselda Durigan
- Subjects
0106 biological sciences ,2. Zero hunger ,0303 health sciences ,geography ,geography.geographical_feature_category ,Agroforestry ,Biodiversity ,Tropical and subtropical grasslands, savannas, and shrublands ,Plant community ,Vegetation ,15. Life on land ,010603 evolutionary biology ,01 natural sciences ,Novel ecosystem ,General Biochemistry, Genetics and Molecular Biology ,Grassland ,03 medical and health sciences ,Disturbance (ecology) ,Ecosystem ,General Agricultural and Biological Sciences ,030304 developmental biology - Abstract
Despite growing recognition of the conservation values of grassy biomes, our understanding of how to maintain and restore biodiverse tropical grasslands (including savannas and open-canopy grassy woodlands) remains limited. To incorporate grasslands into large-scale restoration efforts, we synthesised existing ecological knowledge of tropical grassland resilience and approaches to plant community restoration. Tropical grassland plant communities are resilient to, and often dependent on, the endogenous disturbances with which they evolved - frequent fires and native megafaunal herbivory. In stark contrast, tropical grasslands are extremely vulnerable to human-caused exogenous disturbances, particularly those that alter soils and destroy belowground biomass (e.g. tillage agriculture, surface mining); tropical grassland restoration after severe soil disturbances is expensive and rarely achieves management targets. Where grasslands have been degraded by altered disturbance regimes (e.g. fire exclusion), exotic plant invasions, or afforestation, restoration efforts can recreate vegetation structure (i.e. historical tree density and herbaceous ground cover), but species-diverse plant communities, including endemic species, are slow to recover. Complicating plant-community restoration efforts, many tropical grassland species, particularly those that invest in underground storage organs, are difficult to propagate and re-establish. To guide restoration decisions, we draw on the old-growth grassland concept, the novel ecosystem concept, and theory regarding tree cover along resource gradients in savannas to propose a conceptual framework that classifies tropical grasslands into three broad ecosystem states. These states are: (1) old-growth grasslands (i.e. ancient, biodiverse grassy ecosystems), where management should focus on the maintenance of disturbance regimes; (2) hybrid grasslands, where restoration should emphasise a return towards the old-growth state; and (3) novel ecosystems, where the magnitude of environmental change (i.e. a shift to an alternative ecosystem state) or the socioecological context preclude a return to historical conditions.
- Published
- 2018
- Full Text
- View/download PDF