1. A practical evaluation of measures derived from compressed sensing diffusion spectrum imaging.
- Author
-
Radhakrishnan H, Zhao C, Sydnor VJ, Baller EB, Cook PA, Fair DA, Giesbrecht B, Larsen B, Murtha K, Roalf DR, Rush-Goebel S, Shinohara RT, Shou H, Tisdall MD, Vettel JM, Grafton ST, Cieslak M, and Satterthwaite TD
- Subjects
- Humans, Reproducibility of Results, Brain diagnostic imaging, Brain anatomy & histology, Autopsy, Algorithms, Diffusion Magnetic Resonance Imaging methods, White Matter diagnostic imaging, White Matter anatomy & histology
- Abstract
Diffusion Spectrum Imaging (DSI) using dense Cartesian sampling of q-space has been shown to provide important advantages for modeling complex white matter architecture. However, its adoption has been limited by the lengthy acquisition time required. Sparser sampling of q-space combined with compressed sensing (CS) reconstruction techniques has been proposed as a way to reduce the scan time of DSI acquisitions. However prior studies have mainly evaluated CS-DSI in post-mortem or non-human data. At present, the capacity for CS-DSI to provide accurate and reliable measures of white matter anatomy and microstructure in the living human brain remains unclear. We evaluated the accuracy and inter-scan reliability of 6 different CS-DSI schemes that provided up to 80% reductions in scan time compared to a full DSI scheme. We capitalized on a dataset of 26 participants who were scanned over eight independent sessions using a full DSI scheme. From this full DSI scheme, we subsampled images to create a range of CS-DSI images. This allowed us to compare the accuracy and inter-scan reliability of derived measures of white matter structure (bundle segmentation, voxel-wise scalar maps) produced by the CS-DSI and the full DSI schemes. We found that CS-DSI estimates of both bundle segmentations and voxel-wise scalars were nearly as accurate and reliable as those generated by the full DSI scheme. Moreover, we found that the accuracy and reliability of CS-DSI was higher in white matter bundles that were more reliably segmented by the full DSI scheme. As a final step, we replicated the accuracy of CS-DSI in a prospectively acquired dataset (nā=ā20, scanned once). Together, these results illustrate the utility of CS-DSI for reliably delineating in vivo white matter architecture in a fraction of the scan time, underscoring its promise for both clinical and research applications., (© 2024 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.)
- Published
- 2024
- Full Text
- View/download PDF