This work presents the preparation, optimization, and testing of an enzymebased optical biosensor for catechol determination. The sensing area is attached to a glass support and contains: anionic polyamide 6 (PA6) porous microparticles supporting laccase from Trametes Versicolor, embedded in a Pebax® MH1657 polymer binder that contains the optical indicator dye 3-methyl-2-benzothiazolinone hydrazone (MBTH), responsible for the optical transduction. The catechol analyte, after its enzymatic oxidation, forms o-benzoquinone that can be detected by oxidative coupling with MBTH giving rise to a colored product. The latter can be quantified easuring the UV/VIS absorbance at 500 nm. The PA6 microparticles performed as useful laccase carriers reaching high immobilization yields of up to 99.8% and preserving the enzyme catalytic activity. This permitted the reparation of a new biosensor presenting a detection limit of 11 μM and responding linearly to up to 118 μM of catechol. Biosensor applicability was tested in spiked natural water samples from river and spring. The recovery rates observed were in the range of 97–108% that proves the good accuracy of the proposed biosensor., All authors gratefully acknowledge the financial support of the project TSSiPRO NORTE-01-0145-FEDER-000015, supported by the regional operation program NORTE2020, under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund, as well as the support by National Funds through Fundação para a Ciência e Tecnologia (FCT), project UID/CTM/50025/2019. Special thank is due to the ALBA synchrotron governance for financing our WAXS/SAXS experiments at NCD SWEET beamline in the framework of the approved pro posal ID 2018/022726. N. Dencheva is also grateful for the financial support of FCT in the frames of the strategic project UID/CTM/50025/2013 and the personal program contract CTTI-51/18-IPC. The authors gratefully acknowledge the support of Dr. Amélie Noel (Arkema, France) for providing a free sample of Pebax® MH 1657.