1. A Meta-Analysis of Conductive and Strong Carbon Nanotube Materials
- Author
-
Bulmer, John S, Kaniyoor, Adarsh, Elliott, James A, Bulmer, John S [0000-0002-8275-9904], Kaniyoor, Adarsh [0000-0001-5851-1362], Elliott, James A [0000-0002-4887-6250], and Apollo - University of Cambridge Repository
- Subjects
meta-analysis ,graphitic intercalation compounds ,carbon nanotubes ,conductive polymers - Abstract
A study of 1304 data points collated over 266 papers statistically evaluates the relationships between carbon nanotube (CNT) material characteristics, including: electrical, mechanical, and thermal properties; ampacity; density; purity; microstructure alignment; molecular dimensions and graphitic perfection; and doping. Compared to conductive polymers and graphitic intercalation compounds, which have exceeded the electrical conductivity of copper, CNT materials are currently one-sixth of copper's conductivity, mechanically on-par with synthetic or carbon fibers, and exceed all the other materials in terms of a multifunctional metric. Doped, aligned few-wall CNTs (FWCNTs) are the most superior CNT category; from this, the acid-spun fiber subset are the most conductive, and the subset of fibers directly spun from floating catalyst chemical vapor deposition are strongest on a weight basis. The thermal conductivity of multiwall CNT material rivals that of FWCNT materials. Ampacity follows a diameter-dependent power-law from nanometer to millimeter scales. Undoped, aligned FWCNT material reaches the intrinsic conductivity of CNT bundles and single-crystal graphite, illustrating an intrinsic limit requiring doping for copper-level conductivities. Comparing an assembly of CNTs (forming mesoscopic bundles, then macroscopic material) to an assembly of graphene (forming single-crystal graphite crystallites, then carbon fiber), the ≈1 µm room-temperature, phonon-limited mean-free-path shared between graphene, metallic CNTs, and activated semiconducting CNTs is highlighted, deemphasizing all metallic helicities for CNT power transmission applications.
- Published
- 2021
- Full Text
- View/download PDF