1. Motion and flow insensitive adiabatic T2-preparation module for cardiac MR imaging at 3 tesla
- Author
-
Igor Klem, Han W. Kim, Wolfgang G Rehwald, Raymond J. Kim, Elizabeth R. Jenista, Michele Parker, and Enn-Ling Chen
- Subjects
Magnetization ,Nuclear magnetic resonance ,Image quality ,Coefficient of variation ,Radiology, Nuclear Medicine and imaging ,Blood flow ,Adiabatic process ,Imaging phantom ,Cardiac imaging ,Mathematics ,Weighting - Abstract
A versatile method for generating T2 -weighting is a T2 -preparation module, which has been used successfully for cardiac imaging at 1.5T. Although it has been applied at 3T, higher fields (B0 ≥ 3T) can degrade B0 and B1 homogeneity and result in nonuniform magnetization preparation. For cardiac imaging, blood flow and cardiac motion may further impair magnetization preparation. In this study, a novel T2 -preparation module containing multiple adiabatic B1 -insensitive refocusing pulses is introduced and compared with three previously described modules [(a) composite MLEV4, (b) modified BIR-4 (mBIR-4), and (c) Silver-Hoult-pair]. In the static phantom, the proposed module provided similar or better B0 and B1 insensitivity than the other modules. In human subjects (n = 21), quantitative measurement of image signal coefficient of variation, reflecting overall image inhomogeneity, was lower for the proposed module (0.10) than for MLEV4 (0.15, P < 0.0001), mBIR-4 (0.27, P < 0.0001), and Silver-Hoult-pair (0.14, P = 0.001) modules. Similarly, qualitative analysis revealed that the proposed module had the best image quality scores and ranking (both, P < 0.0001). In conclusion, we present a new T2 -preparation module, which is shown to be robust for cardiac imaging at 3T in comparison with existing methods.
- Published
- 2012
- Full Text
- View/download PDF