1. Defective dimerization of FoF1‐ATP synthase secondary to glycation favors mitochondrial energy deficiency in cardiomyocytes during aging
- Author
-
Diana Bou‐Teen, Celia Fernandez‐Sanz, Elisabet Miro‐Casas, Zuzana Nichtova, Elena Bonzon‐Kulichenko, Kelly Casós, Javier Inserte, Antonio Rodriguez‐Sinovas, Begoña Benito, Shey‐Shing Sheu, Jesús Vázquez, Ignacio Ferreira‐González, Marisol Ruiz‐Meana, Instituto de Salud Carlos III, Ministerio de Salud (España), Sociedad Española de Cardiología, Institut Català de la Salut, [Bou-Teen D, Miro-Casas E, Casós K, Inserte J, Rodriguez-Sinovas A, Benito B, Ruiz-Meana M] Grup de Recerca en Malalties Cardiovasculars, Vall d’Hebron Institut de Recerca (VHIR), Barcelona, Spain. Vall d’Hebron Hospital Universitari, Barcelona, Spain. [Fernandez-Sanz C, Sheu SS] Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, USA. [Nichtova Z] MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy & Cell Biol., Thomas Jefferson University, Philadelphia, USA. [Bonzon-Kulichenko E, Vázquez J] Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain. Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain. [Ferreira-González I] Grup de Recerca en Malalties Cardiovasculars, Vall d’Hebron Institut de Recerca (VHIR), Barcelona, Spain. Vall d’Hebron Hospital Universitari, Barcelona, Spain, and Vall d'Hebron Barcelona Hospital Campus
- Subjects
Glycation End Products, Advanced ,Aging ,Mitochondrial Permeability Transition Pore ,Other subheadings::Other subheadings::/metabolism [Other subheadings] ,Cell Biology ,Mitochondrial Proton-Translocating ATPases ,Mitochondria, Heart ,Mice ,Adenosine Triphosphate ,Animals ,Myocytes, Cardiac ,Calcium ,Mitocondris - Malalties ,Cèl·lules - Envelliment ,células::estructuras celulares::espacio intracelular::citoplasma::estructuras citoplasmáticas::orgánulos::mitocondrias::mitocondrias musculares::mitocondrias cardíacas [ANATOMÍA] ,Dimerization ,Cells::Cellular Structures::Intracellular Space::Cytoplasm::Cytoplasmic Structures::Organelles::Mitochondria::Mitochondria, Muscle::Mitochondria, Heart [ANATOMY] ,Otros calificadores::Otros calificadores::/metabolismo [Otros calificadores] - Abstract
Aging; Dicarbonyl stress; Mitochondria Envelliment; Estrès dicarbonílic; Mitocondris Envejecimiento; Estrés dicarbonílico; Mitocondrias Aged cardiomyocytes develop a mismatch between energy demand and supply, the severity of which determines the onset of heart failure, and become prone to undergo cell death. The FoF1-ATP synthase is the molecular machine that provides >90% of the ATP consumed by healthy cardiomyocytes and is proposed to form the mitochondrial permeability transition pore (mPTP), an energy-dissipating channel involved in cell death. We investigated whether aging alters FoF1-ATP synthase self-assembly, a fundamental biological process involved in mitochondrial cristae morphology and energy efficiency, and the functional consequences this may have. Purified heart mitochondria and cardiomyocytes from aging mice displayed an impaired dimerization of FoF1-ATP synthase (blue native and proximity ligation assay), associated with abnormal mitochondrial cristae tip curvature (TEM). Defective dimerization did not modify the in vitro hydrolase activity of FoF1-ATP synthase but reduced the efficiency of oxidative phosphorylation in intact mitochondria (in which membrane architecture plays a fundamental role) and increased cardiomyocytes’ susceptibility to undergo energy collapse by mPTP. High throughput proteomics and fluorescence immunolabeling identified glycation of 5 subunits of FoF1-ATP synthase as the causative mechanism of the altered dimerization. In vitro induction of FoF1-ATP synthase glycation in H9c2 myoblasts recapitulated the age-related defective FoF1-ATP synthase assembly, reduced the relative contribution of oxidative phosphorylation to cell energy metabolism, and increased mPTP susceptibility. These results identify altered dimerization of FoF1-ATP synthase secondary to enzyme glycation as a novel pathophysiological mechanism involved in mitochondrial cristae remodeling, energy deficiency, and increased vulnerability of cardiomyocytes to undergo mitochondrial failure during aging. This work was supported by the Instituto de Salud Carlos III of the Spanish Ministry of Health (FIS-PI19-01196) and a grant from the Sociedad Española de Cardiología (SEC/FEC-INV-BAS 217003)
- Published
- 2022