1. Disrupting the methionine biosynthetic pathway in Candida guilliermondii: characterization of the MET2 gene as counter-selectable marker.
- Author
-
Obando Montoya EJ, Mélin C, Blanc N, Lanoue A, Foureau E, Boudesocque L, Prie G, Simkin AJ, Crèche J, Atehortùa L, Giglioli-Guivarc'h N, Clastre M, Courdavault V, and Papon N
- Subjects
- Acetyltransferases genetics, Acetyltransferases metabolism, Biosynthetic Pathways genetics, Candida enzymology, Candida genetics, Cloning, Molecular, Cysteine Synthase genetics, Cysteine Synthase metabolism, Genetic Markers genetics, Genetic Markers physiology, Luminescent Proteins genetics, Methionine genetics, Microscopy, Fluorescence, Mutagenesis, Insertional, Transformation, Genetic, Candida metabolism, Methionine biosynthesis
- Abstract
Candida guilliermondii (teleomorph Meyerozyma guilliermondii) is an ascomycetous species belonging to the fungal CTG clade. This yeast remains actively studied as a result of its moderate clinical importance and most of all for its potential uses in biotechnology. The aim of the present study was to establish a convenient transformation system for C. guilliermondii by developing both a methionine auxotroph recipient strain and a functional MET gene as selection marker. We first disrupted the MET2 and MET15 genes encoding homoserine-O-acetyltransferase and O-acetylserine O-acetylhomoserine sulphydrylase, respectively. The met2 mutant was shown to be a methionine auxotroph in contrast to met15 which was not. Interestingly, met2 and met15 mutants formed brown colonies when cultured on lead-containing medium, contrary to the wild-type strain, which develop as white colonies on this medium. The MET2 wild-type allele was successfully used to transfer a yellow fluorescent protein (YFP) gene-expressing vector into the met2 recipient strain. In addition, we showed that the loss of the MET2-containing YFP-expressing plasmid can be easily observed on lead-containing medium. The MET2 wild-type allele, flanked by two short repeated sequences, was then used to disrupt the LYS2 gene (encoding the α-aminoadipate reductase) in the C. guilliermondii met2 recipient strain. The resulting lys2 mutants displayed, as expected, auxotrophy for lysine. Unfortunately, all our attempts to pop-out the MET2 marker (following the recombination of the bordering repeat sequences) from a target lys2 locus were unsuccessful using white/brown colony colour screening. Nevertheless, this MET2 transformation/disruption system represents a new versatile genetic tool for C. guilliermondii., (Copyright © 2014 John Wiley & Sons, Ltd.)
- Published
- 2014
- Full Text
- View/download PDF