1. Adaptive backstepping output feedback control of DC motor actuator with friction and load uncertainty compensation
- Author
-
Salah Laghrouche, Fayez Shakil Ahmed, and Mohamed Harmouche
- Subjects
Lyapunov function ,Test bench ,Engineering ,Adaptive control ,Angular displacement ,business.industry ,Mechanical Engineering ,General Chemical Engineering ,Biomedical Engineering ,Aerospace Engineering ,Control engineering ,DC motor ,Industrial and Manufacturing Engineering ,symbols.namesake ,Computer Science::Systems and Control ,Control and Systems Engineering ,Control theory ,Robustness (computer science) ,Backstepping ,symbols ,Electrical and Electronic Engineering ,business ,Actuator - Abstract
Summary In this paper, we present an output feedback backstepping controller for mechatronic actuators with dynamic adaptive parameters for friction and load compensation. The targeted application is angular position control of automotive mechatronic valves, which possess nonlinear dynamics due to friction. The proposed controller requires only position measurement. The velocity, current, and friction dynamics are obtained by estimation and observation. The adaptive control law compensates the variations in friction behavior and load torque variation, which are common in real life applications. Lyapunov analysis has been used to show the asymptotic convergence of the closed-loop system to zero. Simulation and laboratory experimental results illustrate the effectiveness and robustness of the controller. Further experiments on an engine test bench demonstrate the applicability of this controller in commercial engines, as well as its effectiveness as compared with conventional PI controllers.Copyright © 2014 John Wiley & Sons, Ltd.
- Published
- 2014