1. Analysis of temporal patterns in animal movement networks
- Author
-
Guillaume Le Loc’h, Mathieu Lihoreau, Thibault Dubois, Cristian Pasquaretta, Virginie P. Delepoulle, Philipp Heeb, Tamara Gómez-Moracho, Centre de Recherches sur la Cognition Animale - UMR5169 (CRCA), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Centre de Biologie Intégrative (CBI), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Toulouse Mind & Brain Institut (TMBI), Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT), Centre de Biologie Intégrative (CBI), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), XeriusTracking SARL, Interactions hôtes-agents pathogènes [Toulouse] (IHAP), Ecole Nationale Vétérinaire de Toulouse (ENVT), Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Evolution et Diversité Biologique (EDB), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), This work was funded by the CNRS, a grant from the Agence Nationale de la Recherche to M.L. (ANR‐16‐CE02‐0010), and the Laboratoire d'Excellence (LABEX) TULIP (ANR‐10‐LABX‐41). We acknowledge Prof. Lars Chittka and Dr. Joe Woodgate for providing access to the harmonic radar (bumblebee trajectory) and XeriusTracking for the GPS data (black kite trajectory)., ANR-16-CE02-0010,Mov-It,Le mouvement des ongulés au sein de paysages hétérogènes: identification des processus comportementaux reliant les changements globaux aux performances démographiques et à la gestion spatialement explicite(2016), ANR-10-LABX-0041,TULIP,Towards a Unified theory of biotic Interactions: the roLe of environmental(2010), Centre de Recherches sur la Cognition Animale (CRCA), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut des sciences du cerveau de Toulouse. (ISCT), Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-CHU Toulouse [Toulouse]-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse - Jean Jaurès (UT2J)-CHU Toulouse [Toulouse]-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), and Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées
- Subjects
0106 biological sciences ,0303 health sciences ,movement networks ,Computer science ,business.industry ,Movement (music) ,[SDV]Life Sciences [q-bio] ,Ecological Modeling ,Argos ,010603 evolutionary biology ,01 natural sciences ,GPS tracking ,spatial networks ,03 medical and health sciences ,Harmonic radar ,movement ecology ,Computer vision ,Artificial intelligence ,harmonic radar ,business ,animal trajectories ,motifs time series ,Ecology, Evolution, Behavior and Systematics ,030304 developmental biology - Abstract
We implemented our method in R. We provide the codes and the bumblebee and black kite datasets in Dryad Digital Repository https://doi.org/10.5061/dryad.47d7wm390 (Pasquaretta et al., 2015). The roe deer dataset was obtained from MOVEBANK (Wikelski & Kays, 2020). Animal Identifier: Sandro (M06), from Cagnacci et al. (2011) (https://www.movebank.org/). The wolf dataset was obtained from MOVEBANK (Wikelski & Kays, 2020), Animal identifier: Zimzik, from Kaczensky et al. (2006) (https://www.movebank.org/).We implemented our method in R. We provide the codes and the bumblebee and black kite datasets in Dryad Digital Repository https://doi.org/10.5061/dryad.47d7wm390 (Pasquaretta et al., 2015). The roe deer dataset was obtained from MOVEBANK (Wikelski & Kays, 2020). Animal Identifier: Sandro (M06), from Cagnacci et al. (2011) (https://www.movebank.org/). The wolf dataset was obtained from MOVEBANK (Wikelski & Kays, 2020), Animal identifier: Zimzik, from Kaczensky et al. (2006) (https://www.movebank.org/).; International audience; 1. Understanding how animal movements change across space and time is a fundamental question in ecology. While classical analyses of trajectories give insightful descriptors of spatial patterns, a satisfying method for assessing the temporal succession of such patterns is lacking.2. Network analyses are increasingly used to capture properties of complex animal trajectories in simple graphical metrics. Here, building on this approach, we introduce a method that incorporates time into movement network analyses based on temporal sequences of network motifs.3. We illustrate our method using four example trajectories (bumblebee, black kite, roe deer, wolf) collected with different technologies (harmonic radar, platform terminal transmitter, global positioning system). First, we transformed each trajectory into a spatial network by defining the animal's coordinates as nodes and movements in between as edges. Second, we extracted temporal sequences of network motifs from each movement network and compared the resulting behavioural profiles to topological features of the original trajectory. Finally, we compared each sequence of motifs with simulated Brownian and Lévy random motions to statistically determine differences between trajectories and classical movement models.4. Our analysis of the temporal sequences of network motifs in individual movement networks revealed successions of spatial patterns corresponding to changes in behavioural modes that can be attributed to specific spatio‐temporal events of each animal trajectory. Future applications of our method to multi‐layered movement and social network analysis yield considerable promises for extending the study of complex movement patterns at the population level.
- Published
- 2020
- Full Text
- View/download PDF