1. Oxyfunctionalization of aliphatic compounds by a recombinant peroxygenase from Coprinopsis cinerea.
- Author
-
Babot ED, del Río JC, Kalum L, Martínez AT, and Gutiérrez A
- Subjects
- Agaricales genetics, Alkanes chemistry, Fatty Acids chemistry, Fatty Alcohols chemistry, Fatty Alcohols metabolism, Gas Chromatography-Mass Spectrometry, Hydroxylation, Mixed Function Oxygenases chemistry, Mixed Function Oxygenases genetics, Recombinant Proteins chemistry, Recombinant Proteins genetics, Agaricales enzymology, Alkanes metabolism, Fatty Acids metabolism, Mixed Function Oxygenases metabolism, Recombinant Proteins metabolism
- Abstract
The goal of this study is the selective oxyfunctionalization of aliphatic compounds under mild and environmentally friendly conditions using a low-cost enzymatic biocatalyst. This could be possible taking advantage from a new peroxidase type that catalyzes monooxygenase reactions with H2 O2 as the only cosubstrate (peroxygenase). With this purpose, recombinant peroxygenase, from gene mining in the sequenced genome of Coprinopsis cinerea and heterologous expression using an industrial fungal host, is tested for the first time on aliphatic substrates. The reaction on free and esterified fatty acids and alcohols, and long-chain alkanes was followed by gas chromatography, and the different reaction products were identified by mass spectrometry. Regioselective hydroxylation of saturated/unsaturated fatty acids was observed at the ω-1 and ω-2 positions (only at the ω-2 position in myristoleic acid). Alkyl esters of fatty acids and monoglycerides were also ω-1 or ω-2 hydroxylated, but di- and tri-glycerides were not modified. Fatty alcohols yielded hydroxy derivatives at the ω-1 or ω-2 positions (diols) but also fatty acids and their hydroxy derivatives. Interestingly, the peroxygenase was able to oxyfunctionalize alkanes giving, in addition to alcohols at positions 2 or 3, dihydroxylated derivatives at both sides of the molecule. The predominance of mono- or di-hydroxylated derivatives seems related to the higher or lower proportion of acetone, respectively, in the reaction medium. The recombinant C. cinerea peroxygenase appears as a promising biocatalyst for alkane activation and production of aliphatic oxygenated derivatives, with better properties than the previously reported peroxygenase from Agrocybe aegerita, and advantages related to its recombinant nature for enzyme engineering and industrial production., (Copyright © 2013 Wiley Periodicals, Inc.)
- Published
- 2013
- Full Text
- View/download PDF