1. Generic properties of critical points of the weyl tensor
- Author
-
Angela Pistoia and Anna Maria Micheletti
- Subjects
Weyl tensor ,Tensor contraction ,Nondegenerate Critical Points ,Weyl Tensor ,Yamabe Problem ,Statistical and Nonlinear Physics ,Mathematics (all) ,General Mathematics ,010102 general mathematics ,01 natural sciences ,010104 statistics & probability ,symbols.namesake ,Lanczos tensor ,symbols ,Ricci decomposition ,Symmetric tensor ,Weyl transformation ,0101 mathematics ,Tensor density ,Polyakov action ,Mathematical physics ,Mathematics - Abstract
Given ( M , g ) ${(M,g)}$ , a smooth compact Riemannian n-manifold, we prove that for a generic Riemannian metric g the critical points of the function 𝒲 g ( ξ ) := | Weyl g ( ξ ) | g 2 ${\mathcal{W}_{g}(\xi):=\lvert\mathrm{Weyl}_{g}(\xi)\rvert^{2}_{g}}$ with 𝒲 g ( ξ ) ≠ 0 ${\mathcal{W}_{g}(\xi)\not=0}$ are nondegenerate.
- Published
- 2017