1. Optical tissue probing: human skin hydration detection by speckle patterns analysis
- Author
-
Yarden Tzabari Kelman, Zeev Zalevsky, Nisan Ozana, Nadav Shabairou, and Sagie Asraf
- Subjects
0303 health sciences ,Materials science ,medicine.diagnostic_test ,Vibration source ,Human skin ,Laser ,01 natural sciences ,Atomic and Molecular Physics, and Optics ,law.invention ,Micro raman spectroscopy ,010309 optics ,Vibration ,03 medical and health sciences ,Speckle pattern ,Optical coherence tomography ,law ,0103 physical sciences ,medicine ,Near infrared radiation ,030304 developmental biology ,Biotechnology ,Biomedical engineering - Abstract
An optical approach to determine the hydration level in human skin is presented. The approach is based on temporal tracking of back-reflected secondary speckle patterns generated while illuminating the tested area with a laser and applying periodic vibrations to the surface via a controlled vibration source (CVS). This approach has already been tested successfully for other biomedical parameters such as sensing vital signs, hematology and hemodynamic processes in the body. In this paper we examine and adjust this optical technique with the aim of measuring human skin moisture. We compare the suitability and accuracy of our optical method to the commercially available device for skin moisture measurements, the Corneometer CM 825 (by Courage + Khazaka, Cologne, Germany). Preliminary experiments showing the method's suitability for hydration measurements are presented, may lead to more accurate results that may upgrade the control of the cosmetic industry as well as identifying symptoms of moisture-related skin diseases.
- Published
- 2019
- Full Text
- View/download PDF