1. Adaptive moment estimation for polynomial nonlinear equalizer in PAM8-based optical interconnects
- Author
-
Ji Zhou, Xincheng Huang, Weiping Liu, Long Liu, Changyuan Yu, Zhaohui Li, Haide Wang, Jianping Li, Shecheng Gao, and Jinlong Wei
- Subjects
Modulation order ,Polynomial ,Artificial neural network ,Adaptive algorithm ,Computer science ,business.industry ,MathematicsofComputing_NUMERICALANALYSIS ,02 engineering and technology ,021001 nanoscience & nanotechnology ,01 natural sciences ,Atomic and Molecular Physics, and Optics ,010309 optics ,Moment (mathematics) ,Optics ,Baud ,Parallel processing (DSP implementation) ,0103 physical sciences ,0210 nano-technology ,business ,Global optimization ,Algorithm - Abstract
Adaptive moment estimation (Adam) is a popular optimization method to estimate large-scale parameters in neural networks. This paper proposes the first use of Adam algorithm to fast and stably converge large-scale tap coefficients of polynomial nonlinear equalizer (PNLE) for 129-Gbit/s PAM8-based optical interconnects. PNLE is one of simplified Volterra nonlinear equalizer for making a trade-off between complexity and performance. Different from serial least-mean square (LMS) adaptive algorithm, Adam algorithm is a parallel processing algorithm, which can obtain globally optimal tap coefficients without being trapped in locally optimal tap coefficients. Timing error is one of the main obstacles to the PAM systems with high baud rate and high modulation order. Owing to parallel processing and global optimization, Adam algorithm has much better performance on resisting the timing error, which can achieve faster, more-stable and lower-MSE convergence compared to LMS adaptive algorithm. In conclusion, Adam algorithm shows great potential for converging the tap coefficients of PNLE in PAM8-based optical interconnects.
- Published
- 2019