1. Deep Learning-Assisted Diagnosis of Pediatric Skull Fractures on Plain Radiographs
- Author
-
Jae Won Choi, Yeon Jin Cho, Ji Young Ha, Yun Young Lee, Seok Young Koh, June Young Seo, Young Hun Choi, Jung-Eun Cheon, Ji Hoon Phi, Injoon Kim, Jaekwang Yang, and Woo Sun Kim
- Subjects
Radiography ,Deep Learning ,Skull Fractures ,Artificial Intelligence ,Skull ,Humans ,Radiographic Image Interpretation, Computer-Assisted ,Radiology, Nuclear Medicine and imaging ,Child ,Sensitivity and Specificity ,Retrospective Studies - Abstract
To develop and evaluate a deep learning-based artificial intelligence (AI) model for detecting skull fractures on plain radiographs in children.This retrospective multi-center study consisted of a development dataset acquired from two hospitals (n = 149 and 264) and an external test set (n = 95) from a third hospital. Datasets included children with head trauma who underwent both skull radiography and cranial computed tomography (CT). The development dataset was split into training, tuning, and internal test sets in a ratio of 7:1:2. The reference standard for skull fracture was cranial CT. Two radiology residents, a pediatric radiologist, and two emergency physicians participated in a two-session observer study on an external test set with and without AI assistance. We obtained the area under the receiver operating characteristic curve (AUROC), sensitivity, and specificity along with their 95% confidence intervals (CIs).The AI model showed an AUROC of 0.922 (95% CI, 0.842-0.969) in the internal test set and 0.870 (95% CI, 0.785-0.930) in the external test set. The model had a sensitivity of 81.1% (95% CI, 64.8%-92.0%) and specificity of 91.3% (95% CI, 79.2%-97.6%) for the internal test set and 78.9% (95% CI, 54.4%-93.9%) and 88.2% (95% CI, 78.7%-94.4%), respectively, for the external test set. With the model's assistance, significant AUROC improvement was observed in radiology residents (pooled results) and emergency physicians (pooled results) with the difference from reading without AI assistance of 0.094 (95% CI, 0.020-0.168;A deep learning-based AI model improved the performance of inexperienced radiologists and emergency physicians in diagnosing pediatric skull fractures on plain radiographs.
- Published
- 2022
- Full Text
- View/download PDF