1. Effect of channel geometries on two-phase mixture level swell and its fluctuation amplitude
- Author
-
Takahiro ARAI, Masahiro FURUYA, and Kenetsu SHIRAKAWA
- Subjects
two-phase mixture level ,water level swell ,circular pipe ,rod bundle ,fluctuation amplitude ,collapsed water level ,air–water two-phase flow ,Mechanical engineering and machinery ,TJ1-1570 - Abstract
Gas–liquid two-phase flow in a stagnant pool is an important phenomenon in designing and operating industrial facilities. When gas is mixed or boiling occurs in stagnant water, the actual water level appears higher than the original water level. The actual water level is called a two-phase mixture level and largely depends on the flow channel geometries, dimensions, and flow conditions. This study focuses on the influence of channel geometries, circular pipes and rod bundles, on the two-phase mixture level and its fluctuation behavior. An air–water experiment using circular pipes with inner diameters of 50 and 224 mm and 5 × 5 and 10 × 10 rod bundles was conducted, and the two-phase mixture level swell was visually observed. As the inlet gas flow rate increased, the two-phase mixture level basically increased regardless of the channel geometry. The fluctuation amplitude was remarkably increased by formulating the slug bubbles covering the entire diameter in the small pipe with a diameter of up to 50 mm. In the rod bundles and large pipe with a diameter of 224 mm, no slug bubble was sustained, and the two-phase water level and its fluctuation amplitude were relatively small compared with those of the small pipe.
- Published
- 2020
- Full Text
- View/download PDF