1. Affine Volterra processes
- Author
-
Sergio Pulido, Martin Larsson, Eduardo Abi Jaber, CEntre de REcherches en MAthématiques de la DEcision (CEREMADE), Université Paris Dauphine-PSL-Centre National de la Recherche Scientifique (CNRS), Université Paris Dauphine-PSL, AXA Investment Managers, Multi Asset Client Solutions, Quantitative Research, AXA, Department of Mathematics - ETH, Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology in Zürich [Zürich] (ETH Zürich), Laboratoire de Mathématiques et Modélisation d'Evry (LaMME), Institut National de la Recherche Agronomique (INRA)-Université d'Évry-Val-d'Essonne (UEVE)-ENSIIE-Centre National de la Recherche Scientifique (CNRS), Ecole Nationale Supérieure d'Informatique pour l'Industrie et l'Entreprise (ENSIIE), Martin Larsson gratefully acknowledges financial support by the Swiss National Science Foundation (SNF) under grant 205121_163425. The research of Sergio Pulido benefited from the support of the Chair Markets in Transition (Fédération Bancaire Française) and the project ANR 11-LABX-0019., ANR-11-LABX-0019/11-LABX-0019,LABEX FCD,LABEX Finance & Croissance Durable(2011), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), ANR-11-LABX-0019,LABEX FCD,LABEX Finance & Croissance Durable(2011), Centre National de la Recherche Scientifique (CNRS)-Université Paris Dauphine-PSL, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
- Subjects
Statistics and Probability ,affine processes ,rough volatility ,Markov process ,01 natural sciences ,Stochastic Volterra equations ,Riccati-Volterra equations ,Convolution ,010104 statistics & probability ,symbols.namesake ,Riccati–Volterra equations ,FOS: Mathematics ,Applied mathematics ,MSC2010 classifications: 60J20 (primary), 60G22, 45D05, 91G20 (secondary) ,Uniqueness ,60G22 ,0101 mathematics ,Special case ,60J20 ,45D05 ,Mathematics ,Stochastic process ,010102 general mathematics ,Probability (math.PR) ,State (functional analysis) ,91G20 ,Integral equation ,[MATH.MATH-PR]Mathematics [math]/Probability [math.PR] ,symbols ,Affine transformation ,Statistics, Probability and Uncertainty ,Mathematics - Probability - Abstract
International audience; We introduce affine Volterra processes, defined as solutions of certain stochastic convolution equations with affine coefficients. Classical affine diffusions constitute a special case, but affine Volterra processes are neither semimartingales, nor Markov processes in general. We provide explicit exponential-affine representations of the Fourier--Laplace functional in terms of the solution of an associated system of deterministic integral equations, extending well-known formulas for classical affine diffusions. For specific state spaces, we prove existence, uniqueness, and invariance properties of solutions of the corresponding stochastic convolution equations. Our arguments avoid infinite-dimensional stochastic analysis as well as stochastic integration with respect to non-semimartingales, relying instead on tools from the theory of finite-dimensional deterministic convolution equations. Our findings generalize and simplify recent results in the literature on rough volatility models in finance.
- Published
- 2019