1. Iron nitride, α″-Fe16N2, around <100> interstitial type dislocation loops in neutron-irradiated iron.
- Author
-
Yoshiie, T., Inoue, K., Yoshida, K., Toyama, T., Satoh, Y., and Nagai, Y.
- Subjects
- *
DISLOCATION loops , *ATOM-probe tomography , *NITRIDES , *NEUTRON irradiation , *IRON , *FAST reactors - Abstract
Atom probe tomography (APT) and selected area electron diffraction (SAED) by transmission electron microscopy (TEM) were applied to nano-scale precipitates formed in a neutron-irradiated iron (99.99% pure) at high temperatures. In the conventional TEM, we discovered donut-type precipitates on the {100} planes that formed at the dilatational side of interstitial type dislocation loops with the Burgers vector of <100> on the habit planes of {100} in the bcc iron lattice. The precipitates were identified as nitride, bct α″-Fe16N2, by chemical composition and lattice structural analyses using APT and SAED. Image contrasts of the α″-Fe16N2 in a weak beam dark-field electron microscopy study were carefully analysed with the diffraction vector and the sign of deviation parameter from the Bragg condition, and it was concluded to be a selective visualisation of α″-Fe16N2 on one of the {100} planes. These results were in agreement with the crystallographic orientation between the α″-Fe16N2 and matrix iron, thereby bridging a knowledge gap in α″-Fe16N2 formation during neutron irradiation using a sodium-cooled experimental fast reactor, JOYO, or a 14 MeV D-T neutron source, RTNS-II. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF