1. Studies on a new potential dopaminergic agent: in vitro BBB permeability, in vivo behavioural effects and molecular docking evaluation.
- Author
-
De Caro, Viviana, Sutera, Flavia Maria, Gentile, Carla, Tutone, Marco, Livrea, Maria Antonia, Almerico, Anna Maria, Cannizzaro, Carla, and Giannola, Libero Italo
- Subjects
- *
MOLECULAR docking , *PARKINSON'S disease treatment , *DRUG development , *PRODRUGS , *DOPAMINE , *POLYVINYLIDENE fluoride - Abstract
2-Amino-N-[2-(3,4-dihydroxy-phenyl)-ethyl]-3-phenyl-propionamide (DA-PHEN) has been previously synthesized to obtain a potential prodrug capable of release dopamine (DA) into CNS. However, DA-PHEN could actper seas a dopaminergic drug. In this study, the permeability transport (Pe), obtained by parallel artificial permeability assay (PAMPA), indicated a low passive transcellular transport (Pe = 0.32 ± 0.01 × 10−6 cm/s). Using the Caco-2 cell system, the Papp AP-BLin absorptive direction (3.36 ± 0.02 × 10−5 cm/s) was significantly higher than the Papp BL-APin secretive direction (1.75 ± 0.07 × 10−5 cm/s), suggesting a polarized transport. The efflux ratio (Papp AP-BL/Papp BL-AP = 0.52 ± 0.02) indicated a low affinity of DA-PHEN to efflux carriers. The forced swim test highlighted a reduction of immobility time in both pre-test and test sessions (p < 0.0001), with an exacerbation in the number of headshakes and divings in the pretest (p < 0.0001). Morris water maze strengthened the hypothesis that DA-PHEN induces adaptive responses to environmental challenges which are involved on cognitive functions (DA-PHEN versus CTR: escape latency;p < 0.001; distance swump < 0.001, time spent on target quadrantp < 0.001), without any change in locomotor activity for the administered dose. The molecular docking revealed the interaction of DA-PHEN with the identified D1 site mapping human brain receptor. [ABSTRACT FROM PUBLISHER]
- Published
- 2015
- Full Text
- View/download PDF