1. Segmented Model Selection in Quantile Regression Using the Minimum Description Length Principle.
- Author
-
Aue, Alexander, Cheung, Rex C. Y., Lee, Thomas C. M., and Zhong, Ming
- Subjects
- *
STATISTICAL models , *QUANTILE regression , *REGRESSION analysis , *MINIMUM description length (Information theory) , *GENETIC algorithms , *MATHEMATICAL variables - Abstract
This article proposes new model-fitting techniques for quantiles of an observed data sequence, including methods for data segmentation and variable selection. The main contribution, however, is in providing a means to perform these two tasks simultaneously. This is achieved by matching the data with the best-fitting piecewise quantile regression model, where the fit is determined by a penalization derived from the minimum description length principle. The resulting optimization problem is solved with the use of genetic algorithms. The proposed, fully automatic procedures are, unlike traditional break point procedures, not based on repeated hypothesis tests, and do not require, unlike most variable selection procedures, the specification of a tuning parameter. Theoretical large-sample properties are derived. Empirical comparisons with existing break point and variable selection methods for quantiles indicate that the new procedures work well in practice. [ABSTRACT FROM PUBLISHER]
- Published
- 2014
- Full Text
- View/download PDF