9 results on '"P. Caironi"'
Search Results
2. Time to generate ventilator-induced lung injury among mammals with healthy lungs: a unifying hypothesis
- Author
-
Caironi, Pietro, Langer, Thomas, Carlesso, Eleonora, Protti, Alessandro, and Gattinoni, Luciano
- Published
- 2011
- Full Text
- View/download PDF
3. The zircon typology method in the study of metamorphic rocks: the orthogneisses of the Eastern Serie dei Laghi (Southern Alps)
- Author
-
Caironi, Valeria
- Published
- 1994
- Full Text
- View/download PDF
4. Effects of CPAP and FiO 2 on respiratory effort and lung stress in early COVID-19 pneumonia: a randomized, crossover study.
- Author
-
Giosa L, Collins PD, Sciolla M, Cerrone F, Di Blasi S, Macrì MM, Davicco L, Laguzzi A, Gorgonzola F, Penso R, Steinberg I, Muraccini M, Perboni A, Russotto V, Camporota L, Bellani G, and Caironi P
- Abstract
Background: in COVID-19 acute respiratory failure, the effects of CPAP and FiO
2 on respiratory effort and lung stress are unclear. We hypothesize that, in the compliant lungs of early Sars-CoV-2 pneumonia, the application of positive pressure through Helmet-CPAP may not decrease respiratory effort, and rather worsen lung stress and oxygenation when compared to higher FiO2 delivered via oxygen masks., Methods: In this single-center (S.Luigi Gonzaga University-Hospital, Turin, Italy), randomized, crossover study, we included patients receiving Helmet-CPAP for early (< 48 h) COVID-19 pneumonia without additional cardiac or respiratory disease. Healthy subjects were included as controls. Participants were equipped with an esophageal catheter, a non-invasive cardiac output monitor, and an arterial catheter. The protocol consisted of a random sequence of non-rebreather mask (NRB), Helmet-CPAP (with variable positive pressure and FiO2 ) and Venturi mask (FiO2 0.5), each delivered for 20 min. Study outcomes were changes in respiratory effort (esophageal swing), total lung stress (dynamic + static transpulmonary pressure), gas-exchange and hemodynamics., Results: We enrolled 28 COVID-19 patients and 7 healthy controls. In all patients, respiratory effort increased from NRB to Helmet-CPAP (5.0 ± 3.7 vs 8.3 ± 3.9 cmH2 O, p < 0.01). However, Helmet's pressure decreased by a comparable amount during inspiration (- 3.1 ± 1.0 cmH2 O, p = 0.16), therefore dynamic stress remained stable (p = 0.97). Changes in static and total lung stress from NRB to Helmet-CPAP were overall not significant (p = 0.07 and p = 0.09, respectively), but showed high interpatient variability, ranging from - 4.5 to + 6.1 cmH2 O, and from - 5.8 to + 5.7 cmH2 O, respectively. All findings were confirmed in healthy subjects, except for an increase in dynamic stress (p < 0.01). PaO2 decreased from NRB to Helmet-CPAP with FiO2 0.5 (107 ± 55 vs 86 ± 30 mmHg, p < 0.01), irrespective of positive pressure levels (p = 0.64). Conversely, with Helmet's FiO2 0.9, PaO2 increased (p < 0.01), but oxygen delivery remained stable (p = 0.48) as cardiac output decreased (p = 0.02). When PaO2 fell below 60 mmHg with VM, respiratory effort increased proportionally (p < 0.01, r = 0.81)., Conclusions: In early COVID-19 pneumonia, Helmet-CPAP increases respiratory effort without altering dynamic stress, while the effects upon static and total stress are variable, requiring individual assessment. Oxygen masks with higher FiO2 provide better oxygenation with lower respiratory effort. Trial registration Retrospectively registered (13-May-2021): clinicaltrials.gov (NCT04885517), https://clinicaltrials.gov/ct2/show/NCT04885517 ., (© 2023. La Société de Réanimation de Langue Francaise = The French Society of Intensive Care (SRLF).)- Published
- 2023
- Full Text
- View/download PDF
5. Multidisciplinary expert panel report on fluid stewardship: perspectives and practice.
- Author
-
Malbrain MLNG, Caironi P, Hahn RG, Llau JV, McDougall M, Patrão L, Ridley E, and Timmins A
- Abstract
Although effective and appropriate fluid management is a critical aspect of quality care during hospitalization, the widespread adoption of consistent policies that ensure adequate fluid stewardship has been slow and heterogenous. Despite evidence-based guidelines on fluid management being available, clinical opinions continue to diverge on important aspects of care in this setting, and the consistency of guideline implementation is far from ideal. A multidisciplinary panel of leading practitioners and experts convened to discuss best practices for ongoing staff education, intravenous fluid therapy, new training technologies, and strategies to track the success of institutional fluid stewardship efforts. Fluid leads should be identified in every hospital to ensure consistency in fluid administration and monitoring. In this article, strategies to communicate the importance of effective fluid stewardship for the purposes of education, training, institutional support, and improvement of patient outcomes are reviewed and recommendations are summarized., (© 2023. La Société de Réanimation de Langue Francaise = The French Society of Intensive Care (SRLF).)
- Published
- 2023
- Full Text
- View/download PDF
6. Higher levels of IgA and IgG at sepsis onset are associated with higher mortality: results from the Albumin Italian Outcome Sepsis (ALBIOS) trial.
- Author
-
Alagna L, Meessen JMTA, Bellani G, Albiero D, Caironi P, Principale I, Vivona L, Grasselli G, Motta F, Agnelli NM, Parrini V, Romagnoli S, Keim R, Di Marzo Capozzi F, Taccone FS, Taccone W, Bottazzi B, Bandera A, Cortegiani A, and Latini R
- Abstract
Background: The role of intravenous immunoglobulins (IVIG) during sepsis is controversial, as different trials on IVIG have observed inconsistent survival benefits. We aimed to elucidate the possible association and clinical significance between circulating levels of immunoglobulins., Methods: In a subset of 956 patients with severe sepsis and septic shock of the multicentre, open-label RCT ALBIOS, venous blood samples were serially collected 1, 2, and 7 days after enrolment (or at ICU discharge, whichever came first). IgA, IgG and IgM concentrations were assayed in all patients on day 1 and in a subgroup of 150 patients on days 2 and 7. Ig concentrations were measured employing a turbidimetric assay, OSR61171 system., Results: IgA on day 1 had a significant predictive value for both 28-day and 90-day mortality (28-day mortality, HR: 1.50 (95% CI 1.18-1.92); 90-day mortality, HR: 1.54 (95% CI 1.25-1.91)). IgG, but not IgM, on day 1 showed similar results for 28-day (HR 1.83 (95% CI 1.33-2.51) and 90-day mortality HR: 1.66 (95% CI 1.23-2.25)). In addition, lower levels of IgG but not of IgA and IgM, at day 1 were associated with significantly higher risk of secondary infections (533 [406-772] vs 600 [452-842] mg/dL, median [Q1-Q3], p = 0.007)., Conclusions: In the largest cohort study of patients with severe sepsis or septic shock, we found that high levels of IgA and IgG on the first day of diagnosis were associated with a decreased 90-day survival. No association was found between IgM levels and survival. As such, the assessment of endogenous immunoglobulins could be a useful tool to identify septic patients at high risk of mortality. Trial registration #NCT00707122, Clinicaltrial.gov, registered 30 June 2008., (© 2021. The Author(s).)
- Published
- 2021
- Full Text
- View/download PDF
7. Fluid-induced harm in the hospital: look beyond volume and start considering sodium. From physiology towards recommendations for daily practice in hospitalized adults.
- Author
-
Van Regenmortel N, Moers L, Langer T, Roelant E, De Weerdt T, Caironi P, Malbrain MLNG, Elbers P, Van den Wyngaert T, and Jorens PG
- Abstract
Purpose: Iatrogenic fluid overload is a potential side effect of intravenous fluid therapy in the hospital. Little attention has been paid to sodium administration as a separate cause of harm. With this narrative review, we aim to substantiate the hypothesis that a considerable amount of fluid-induced harm is caused not only by fluid volume, but also by the sodium that is administered to hospitalized patients., Methods: We show how a regular dietary sodium intake is easily surpassed by the substantial amounts of sodium that are administered during typical hospital stays. The most significant sodium burdens are caused by isotonic maintenance fluid therapy and by fluid creep, defined as the large volume unintentionally administered to patients in the form of dissolved medication. In a section on physiology, we elaborate on the limited renal handling of an acute sodium load. We demonstrate how the subsequent retention of water is an energy-demanding, catabolic process and how free water is needed to excrete large burdens of sodium. We quantify the effect size of sodium-induced fluid retention and discuss its potential clinical impact. Finally, we propose preventive measures, discuss the benefits and risks of low-sodium maintenance fluid therapy, and explore options for reducing the amount of sodium caused by fluid creep., Conclusion: The sodium burdens caused by isotonic maintenance fluids and fluid creep are responsible for an additional and avoidable derailment of fluid balance, with presumed clinical consequences. Moreover, the handling of sodium overload is characterized by increased catabolism. Easy and effective measures for reducing sodium load and fluid retention include choosing a hypotonic rather than isotonic maintenance fluid strategy (or avoiding these fluids when enough free water is provided through other sources) and dissolving as many medications as possible in glucose 5%.
- Published
- 2021
- Full Text
- View/download PDF
8. Intravenous fluid therapy in the perioperative and critical care setting: Executive summary of the International Fluid Academy (IFA).
- Author
-
Malbrain MLNG, Langer T, Annane D, Gattinoni L, Elbers P, Hahn RG, De Laet I, Minini A, Wong A, Ince C, Muckart D, Mythen M, Caironi P, and Van Regenmortel N
- Abstract
Intravenous fluid administration should be considered as any other pharmacological prescription. There are three main indications: resuscitation, replacement, and maintenance. Moreover, the impact of fluid administration as drug diluent or to preserve catheter patency, i.e., fluid creep, should also be considered. As for antibiotics, intravenous fluid administration should follow the four Ds: drug, dosing, duration, de-escalation. Among crystalloids, balanced solutions limit acid-base alterations and chloride load and should be preferred, as this likely prevents renal dysfunction. Among colloids, albumin, the only available natural colloid, may have beneficial effects. The last decade has seen growing interest in the potential harms related to fluid overloading. In the perioperative setting, appropriate fluid management that maintains adequate organ perfusion while limiting fluid administration should represent the standard of care. Protocols including a restrictive continuous fluid administration alongside bolus administration to achieve hemodynamic targets have been proposed. A similar approach should be considered also for critically ill patients, in whom increased endothelial permeability makes this strategy more relevant. Active de-escalation protocols may be necessary in a later phase. The R.O.S.E. conceptual model (Resuscitation, Optimization, Stabilization, Evacuation) summarizes accurately a dynamic approach to fluid therapy, maximizing benefits and minimizing harms. Even in specific categories of critically ill patients, i.e., with trauma or burns, fluid therapy should be carefully applied, considering the importance of their specific aims; maintaining peripheral oxygen delivery, while avoiding the consequences of fluid overload.
- Published
- 2020
- Full Text
- View/download PDF
9. Real-time urinary electrolyte monitoring after furosemide administration in surgical ICU patients with normal renal function.
- Author
-
Zazzeron L, Ottolina D, Scotti E, Ferrari M, Bruzzone P, Sibilla S, Marenghi C, Gattinoni L, and Caironi P
- Abstract
Background: Although the loop-diuretic furosemide is widely employed in critically ill patients with known long-term effects on plasma electrolytes, accurate data describing its acute effects on renal electrolyte handling and the generation of plasma electrolyte alterations are lacking. We hypothesized that the long-term effects of furosemide on plasma electrolytes and acid-base depend on its immediate effects on electrolyte excretion rate and patient clinical baseline characteristics. By monitoring urinary electrolytes quasi-continuously, we aimed to verify this hypothesis in a cohort of surgical ICU patients with normal renal function., Methods: We retrospectively enrolled 39 consecutive patients admitted to a postoperative ICU after major surgery, and receiving single low-dose intravenous administration of furosemide. Urinary output, pH, sodium [Na(+)], potassium [K(+)], chloride [Cl(-)] and ammonium [NH4 (+)] concentrations were measured every 10 min for three to 8 h. Urinary anion gap (AG), electrolyte excretion rate, fractional excretion (Fe) and time constant of urinary [Na(+)] variation (τNa(+)) were calculated., Results: Ten minutes after furosemide administration (12 ± 5 mg), urinary [Na(+)] and [Cl(-)], and their excretion rates, increased to similar levels (P < 0.001). After the first hour, urinary [Cl(-)] decreased less rapidly than [Na(+)], leading to a reduction in urinary AG and pH and an increment in urinary [NH4 (+)] (P < 0.001). Median urinary [Cl(-)] over the first 3-h period was higher than baseline urinary and plasmatic [Cl(-)] (P < 0.001). During the first 2 h, difference between FeCl(-) and FeNa(+) increased (P < 0.05). Baseline higher values of central venous pressure and FeNa(+) were associated with greater increases in FeNa(+) after furosemide (P = 0.03 and P = 0.007), whereas higher values of mean arterial and central venous pressures were associated with a longer τNa(+) (P < 0.05). In patients receiving multiple administrations (n = 11), arterial pH, base excess and strong ion difference increased, due to a decrease in plasmatic [Cl(-)]., Conclusions: Low-dose furosemide administration immediately modifies urinary electrolyte excretion rates, likely in relation to the ongoing proximal tubular activity, unveiled by its inhibitory action on Henle's loop. Such effects, when cumulative, found the bases for the long-term alterations observed. Real-time urinary electrolyte monitoring may help in tailoring patient diuretic and hemodynamic therapies.
- Published
- 2016
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.