6 results on '"Gatti DM"'
Search Results
2. Genome-wide association for testis weight in the diversity outbred mouse population.
- Author
-
Yuan JT, Gatti DM, Philip VM, Kasparek S, Kreuzman AM, Mansky B, Sharif K, Taterra D, Taylor WM, Thomas M, Ward JO, Holmes A, Chesler EJ, and Parker CC
- Subjects
- Animals, Chromosome Mapping, Computational Biology methods, Genetic Linkage, Genetic Variation, Genetics, Population, Genotype, Male, Mice, Phenotype, Quantitative Trait Loci, Animals, Outbred Strains genetics, Genome-Wide Association Study, Organ Size, Testis anatomy & histology, Testis metabolism
- Abstract
Testis weight is a genetically mediated trait associated with reproductive efficiency across numerous species. We sought to evaluate the genetically diverse, highly recombinant Diversity Outbred (DO) mouse population as a tool to identify and map quantitative trait loci (QTLs) associated with testis weight. Testis weights were recorded for 502 male DO mice and the mice were genotyped on the GIGAMuga array at ~ 143,000 SNPs. We performed a genome-wide association analysis and identified one significant and two suggestive QTLs associated with testis weight. Using bioinformatic approaches, we developed a list of candidate genes and identified those with known roles in testicular size and development. Candidates of particular interest include the RNA demethylase gene Alkbh5, the cyclin-dependent kinase inhibitor gene Cdkn2c, the dynein axonemal heavy chain gene Dnah11, the phospholipase D gene Pld6, the trans-acting transcription factor gene Sp4, and the spermatogenesis-associated gene Spata6, each of which has a human ortholog. Our results demonstrate the utility of DO mice in high-resolution genetic mapping of complex traits, enabling us to identify developmentally important genes in adult mice. Understanding how genetic variation in these genes influence testis weight could aid in the understanding of mechanisms of mammalian reproductive function.
- Published
- 2018
- Full Text
- View/download PDF
3. Quantitative trait mapping in Diversity Outbred mice identifies two genomic regions associated with heart size.
- Author
-
Shorter JR, Huang W, Beak JY, Hua K, Gatti DM, de Villena FP, Pomp D, and Jensen BC
- Subjects
- Animals, Cholesterol genetics, Cholesterol metabolism, Chromosome Mapping, Diet adverse effects, Female, Genomics, Genotype, Haplotypes, Male, Mice, Phenotype, Genetic Variation, Heart anatomy & histology, Organ Size genetics, Quantitative Trait Loci genetics
- Abstract
Heart size is an important factor in cardiac health and disease. In particular, increased heart weight is predictive of adverse cardiovascular outcomes in multiple large community-based studies. We use two cohorts of Diversity Outbred (DO) mice to investigate the role of genetics, sex, age, and diet on heart size. DO mice (n = 289) of both sexes from generation 10 were fed a standard chow diet, and analyzed at 12-15 weeks of age. Another cohort of female DO mice (n = 258) from generation 11 were fed either a high-fat, cholesterol-containing (HFC) diet or a low-fat, high-protein diet, and analyzed at 24-25 weeks. We did not observe an effect of diet on body or heart weight in generation 11 mice, although we previously reported an effect on other cardiovascular risk factors, including cholesterol, triglycerides, and insulin. We do observe a significant genetic effect on heart weight in this population. We identified two quantitative trait loci for heart weight, one (Hwtf1) at a genome-wide significance level of p ≤ 0.05 on MMU15 and one (Hwtf2) at a genome-wide suggestive level of p ≤ 0.1 on MMU10, that together explain 13.3% of the phenotypic variance. Hwtf1 contained collagen type XXII alpha 1 chain (Col22a1), and the NZO/HlLtJ and WSB/EiJ haplotypes were associated with larger hearts. This is consistent with heart tissue Col22a1 expression in DO founders and SNP patterns within Hwtf1 for Col22a1. Col22a1 has been previously associated with cardiac fibrosis in mice, suggesting that Col22a1 may be involved in pathological cardiac hypertrophy.
- Published
- 2018
- Full Text
- View/download PDF
4. Precise genetic mapping and integrative bioinformatics in Diversity Outbred mice reveals Hydin as a novel pain gene.
- Author
-
Recla JM, Robledo RF, Gatti DM, Bult CJ, Churchill GA, and Chesler EJ
- Subjects
- Alleles, Animals, Animals, Outbred Strains, Chromosome Mapping, Computational Biology, Female, Humans, Male, Mice metabolism, Microfilament Proteins metabolism, Pain metabolism, Quantitative Trait Loci, Mice genetics, Microfilament Proteins genetics, Pain genetics
- Abstract
Mouse genetics is a powerful approach for discovering genes and other genome features influencing human pain sensitivity. Genetic mapping studies have historically been limited by low mapping resolution of conventional mouse crosses, resulting in pain-related quantitative trait loci (QTL) spanning several megabases and containing hundreds of candidate genes. The recently developed Diversity Outbred (DO) population is derived from the same eight inbred founder strains as the Collaborative Cross, including three wild-derived strains. DO mice offer increased genetic heterozygosity and allelic diversity compared to crosses involving standard mouse strains. The high rate of recombinatorial precision afforded by DO mice makes them an ideal resource for high-resolution genetic mapping, allowing the circumvention of costly fine-mapping studies. We utilized a cohort of ~300 DO mice to map a 3.8 Mbp QTL on chromosome 8 associated with acute thermal pain sensitivity, which we have tentatively named Tpnr6. We used haplotype block partitioning to narrow Tpnr6 to a width of ~230 Kbp, reducing the number of putative candidate genes from 44 to 3. The plausibility of each candidate gene's role in pain response was assessed using an integrative bioinformatics approach, combining data related to protein domain, biological annotation, gene expression pattern, and protein functional interaction. Our results reveal a novel, putative role for the protein-coding gene, Hydin, in thermal pain response, possibly through the gene's role in ciliary motility in the choroid plexus-cerebrospinal fluid system of the brain. Real-time quantitative-PCR analysis showed no expression differences in Hydin transcript levels between pain-sensitive and pain-resistant mice, suggesting that Hydin may influence hot-plate behavior through other biological mechanisms.
- Published
- 2014
- Full Text
- View/download PDF
5. The Diversity Outbred mouse population.
- Author
-
Churchill GA, Gatti DM, Munger SC, and Svenson KL
- Subjects
- Algorithms, Alleles, Animals, Cholesterol genetics, Quantitative Trait Loci, Mice genetics
- Abstract
The Diversity Outbred (DO) population is a heterogeneous stock derived from the same eight founder strains as the Collaborative Cross (CC) inbred strains. Genetically heterogeneous DO mice display a broad range of phenotypes. Natural levels of heterozygosity provide genetic buffering and, as a result, DO mice are robust and breed well. Genetic mapping analysis in the DO presents new challenges and opportunities. Specialized algorithms are required to reconstruct haplotypes from high-density SNP array data. The eight founder haplotypes can be combined into 36 possible diplotypes, which must be accommodated in QTL mapping analysis. Population structure of the DO must be taken into account here. Estimated allele effects of eight founder haplotypes provide information that is not available in two-parent crosses and can dramatically reduce the number of candidate loci. Allele effects can also distinguish chance colocation of QTL from pleiotropy, which provides a basis for establishing causality in expression QTL studies. We recommended sample sizes of 200-800 mice for QTL mapping studies, larger than for traditional crosses. The CC inbred strains provide a resource for independent validation of DO mapping results. Genetic heterogeneity of the DO can provide a powerful advantage in our ability to generalize conclusions to other genetically diverse populations. Genetic diversity can also help to avoid the pitfall of identifying an idiosyncratic reaction that occurs only in a limited genetic context. Informatics tools and data resources associated with the CC, the DO, and their founder strains are developing rapidly. We anticipate a flood of new results to follow as our community begins to adopt and utilize these new genetic resource populations.
- Published
- 2012
- Full Text
- View/download PDF
6. Replication and narrowing of gene expression quantitative trait loci using inbred mice.
- Author
-
Gatti DM, Harrill AH, Wright FA, Threadgill DW, and Rusyn I
- Subjects
- Animals, Female, Linkage Disequilibrium, Male, Mice classification, Mice, Inbred Strains, Phylogeny, Chromosome Mapping methods, DNA Replication, Gene Expression Profiling methods, Mice genetics, Quantitative Trait Loci
- Abstract
Gene expression quantitative trait locus (eQTL) mapping has become a powerful tool in systems biology. While many authors have made important discoveries using this approach, one persistent challenge in eQTL studies is the selection of loci and genes that should receive further biological investigation. In this study we compared eQTL generated from gene expression profiling in the livers of two panels of mouse strains: 41 BXD recombinant inbred and 36 Mouse Diversity Panel (MDP) strains. Cis-eQTL, loci in which the transcript and its maximum QTL are colocated, have been shown to be more reproducible than trans-eQTL, which are not colocated with the transcript. We observed that between 9.9 and 12.1% of cis-eQTL and between 2.0 and 12.6% of trans-eQTL replicated between the two panels depending on the degree of statistical stringency. Notably, a significant eQTL hotspot on distal chromosome 12 observed in the BXD panel was reproduced in the MDP. Furthermore, the shorter linkage disequilibrium in the MDP strains allowed us to considerably narrow the locus and limit the number of candidate genes to a cluster of Serpin genes, which code for extracellular proteases. We conclude that this strategy has some utility in increasing confidence and resolution in eQTL mapping studies; however, due to the high false-positive rate in the MDP, eQTL mapping in inbred strains is best carried out in combination with an eQTL linkage study.
- Published
- 2009
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.