1. MicroRNAs Association in the Cardiac Hypertrophy Secondary to Complex Congenital Heart Disease in Children.
- Author
-
Sánchez-Gómez MC, García-Mejía KA, Pérez-Díaz Conti M, Díaz-Rosas G, Palma-Lara I, Sánchez-Urbina R, Klünder-Klünder M, Botello-Flores JA, Balderrábano-Saucedo NA, and Contreras-Ramos A
- Subjects
- Biomarkers analysis, Biopsy, Child, Child, Preschool, Female, Heart Defects, Congenital complications, Heart Ventricles pathology, Humans, Infant, Infant, Newborn, Male, MicroRNAs analysis, Transcriptome, Cardiomegaly genetics, Heart Defects, Congenital genetics, MicroRNAs genetics
- Abstract
Complex congenital heart disease (CHD) affects cardiac blood flow, generating a pressure overload in the compromised ventricles and provoking hypertrophy that over time will induce myocardial dysfunction and cause a potential risk of imminent death. Therefore, the early diagnosis of complex CHD is paramount during the first year of life, with surgical treatment of patients favoring survival. In the present study, we analyzed cardiac tissue and plasma of children with cardiac hypertrophy (CH) secondary to CHD for the expression of 11 miRNAs specific to CH in adults. The results were compared with the miRNA expression patterns in tissue and blood of healthy children. In this way, we determined that miRNAs 1, 18b, 21, 23b, 133a, 195, and 208b constitute the expression profile of the cardiac tissue of children with CHD. Meanwhile, miRNAs 21, 23a, 23b, and 24 can be considered specific biomarkers for the diagnosis of CH in infants with CHD. These results suggest that CH secondary to CHD in children differs in its mechanism from that described for adult hypertrophy, offering a new perspective to study the development of this pathology and to determine the potential of hypertrophic miRNAs to be biomarkers for early CH.
- Published
- 2017
- Full Text
- View/download PDF