5 results on '"N. Butowski"'
Search Results
2. The immunohistochemical, DNA methylation, and chromosomal copy number profile of cauda equina paraganglioma is distinct from extra-spinal paraganglioma.
- Author
-
Ramani B, Gupta R, Wu J, Barreto J, Bollen AW, Tihan T, Mummaneni PV, Ames C, Clark A, Oberheim Bush NA, Butowski N, Phillips D, King BE, Bator SM, Treynor EC, Zherebitskiy V, Quinn PS, Walker JB, Pekmezci M, Sullivan DV, Hofmann JW, Sloan EA, M Chang S, Berger MS, Solomon DA, and Perry A
- Subjects
- Adult, Aged, Aged, 80 and over, Cauda Equina metabolism, Female, Germ-Line Mutation genetics, Germ-Line Mutation physiology, Humans, Male, Middle Aged, Paraganglioma genetics, Young Adult, Cauda Equina pathology, Central Nervous System Neoplasms genetics, DNA Copy Number Variations physiology, DNA Methylation physiology, Immunohistochemistry methods, Paraganglioma pathology
- Abstract
Paragangliomas are neuroendocrine tumors of the autonomic nervous system that are variably clinically functional and have a potential for metastasis. Up to 40% occur in the setting of a hereditary syndrome, most commonly due to germline mutations in succinate dehydrogenase (SDHx) genes. Immunohistochemically, paragangliomas are characteristically GATA3-positive and cytokeratin-negative, with loss of SDHB expression in most hereditary cases. In contrast, the rare paragangliomas arising in the cauda equina (CEP) or filum terminale region have been shown to be hormonally silent, clinically indolent, and have variable keratin expression, suggesting these tumors may represent a separate pathologic entity. We retrospectively evaluated 17 CEPs from 11 male and 6 female patients with a median age of 38 years (range 21-82), none with a family history of neuroendocrine neoplasia. Six of the 17 tumors demonstrated prominent gangliocytic or ganglioneuromatous differentiation. By immunohistochemistry, none of the CEPs showed GATA3 positivity or loss of SDHB staining; all 17 CEPs were cytokeratin positive. Genome-wide DNA methylation profiling was performed on 12 of the tumors and compared with publicly available genome-wide DNA methylation data. Clustering analysis showed that CEPs form a distinct epigenetic group, separate from paragangliomas of extraspinal sites, pheochromocytomas, and other neuroendocrine neoplasms. Copy number analysis revealed diploid genomes in the vast majority of CEPs, whereas extraspinal paragangliomas were mostly aneuploid with recurrent trisomy 1q and monosomies of 1p, 3, and 11, none of which were present in the cohort of CEP. Together, these findings indicate that CEPs likely represent a distinct entity. Future genomic studies are needed to further elucidate the molecular pathogenesis of these tumors.
- Published
- 2020
- Full Text
- View/download PDF
3. Recurrent non-canonical histone H3 mutations in spinal cord diffuse gliomas.
- Author
-
Sloan EA, Cooney T, Oberheim Bush NA, Buerki R, Taylor J, Clarke JL, Torkildson J, Kline C, Reddy A, Mueller S, Banerjee A, Butowski N, Chang S, Mummaneni PV, Chou D, Tan L, Theodosopoulos P, McDermott M, Berger M, Raffel C, Gupta N, Sun PP, Li Y, Shah V, Cha S, Braunstein S, Raleigh DR, Samuel D, Scharnhorst D, Fata C, Guo H, Moes G, Kim JYH, Koschmann C, Van Ziffle J, Onodera C, Devine P, Grenert JP, Lee JC, Pekmezci M, Phillips JJ, Tihan T, Bollen AW, Perry A, and Solomon DA
- Subjects
- Adolescent, Adult, Aged, Brain Neoplasms genetics, Brain Neoplasms mortality, Child, Child, Preschool, Female, Glioma pathology, Humans, Male, Middle Aged, Spinal Cord pathology, Spinal Cord Neoplasms pathology, Young Adult, Glioma genetics, Histones genetics, Mutation genetics, Spinal Cord Neoplasms genetics
- Published
- 2019
- Full Text
- View/download PDF
4. The genetic landscape of gliomas arising after therapeutic radiation.
- Author
-
López GY, Van Ziffle J, Onodera C, Grenert JP, Yeh I, Bastian BC, Clarke J, Oberheim Bush NA, Taylor J, Chang S, Butowski N, Banerjee A, Mueller S, Kline C, Torkildson J, Samuel D, Siongco A, Raffel C, Gupta N, Kunwar S, Mummaneni P, Aghi M, Theodosopoulos P, Berger M, Phillips JJ, Pekmezci M, Tihan T, Bollen AW, Perry A, and Solomon DA
- Subjects
- Adolescent, Adult, Astrocytoma radiotherapy, Biomarkers, Tumor genetics, Brain Neoplasms radiotherapy, Child, Child, Preschool, Female, Genomics, Homozygote, Humans, Male, Mutation genetics, Sequence Deletion genetics, Telomerase genetics, Young Adult, Astrocytoma genetics, Brain Neoplasms genetics, Glioma genetics, Glioma radiotherapy
- Abstract
Radiotherapy improves survival for common childhood cancers such as medulloblastoma, leukemia, and germ cell tumors. Unfortunately, long-term survivors suffer sequelae that can include secondary neoplasia. Gliomas are common secondary neoplasms after cranial or craniospinal radiation, most often manifesting as high-grade astrocytomas with poor clinical outcomes. Here, we performed genetic profiling on a cohort of 12 gliomas arising after therapeutic radiation to determine their molecular pathogenesis and assess for differences in genomic signature compared to their spontaneous counterparts. We identified a high frequency of TP53 mutations, CDK4 amplification or CDKN2A homozygous deletion, and amplifications or rearrangements involving receptor tyrosine kinase and Ras-Raf-MAP kinase pathway genes including PDGFRA, MET, BRAF, and RRAS2. Notably, all tumors lacked alterations in IDH1, IDH2, H3F3A, HIST1H3B, HIST1H3C, TERT (including promoter region), and PTEN, which genetically define the major subtypes of diffuse gliomas in children and adults. All gliomas in this cohort had very low somatic mutation burden (less than three somatic single nucleotide variants or small indels per Mb). The ten high-grade gliomas demonstrated markedly aneuploid genomes, with significantly increased quantity of intrachromosomal copy number breakpoints and focal amplifications/homozygous deletions compared to spontaneous high-grade gliomas, likely as a result of DNA double-strand breaks induced by gamma radiation. Together, these findings demonstrate a distinct molecular pathogenesis of secondary gliomas arising after radiation therapy and identify a genomic signature that may aid in differentiating these tumors from their spontaneous counterparts.
- Published
- 2019
- Full Text
- View/download PDF
5. Efficacy of depatuxizumab mafodotin (ABT-414) monotherapy in patients with EGFR-amplified, recurrent glioblastoma: results from a multi-center, international study.
- Author
-
van den Bent M, Gan HK, Lassman AB, Kumthekar P, Merrell R, Butowski N, Lwin Z, Mikkelsen T, Nabors LB, Papadopoulos KP, Penas-Prado M, Simes J, Wheeler H, Walbert T, Scott AM, Gomez E, Lee HJ, Roberts-Rapp L, Xiong H, Bain E, Ansell PJ, Holen KD, Maag D, and Reardon DA
- Subjects
- Adult, Aged, Aged, 80 and over, ErbB Receptors genetics, Female, Glioblastoma pathology, Humans, Male, Middle Aged, Antibodies, Monoclonal, Humanized therapeutic use, Glioblastoma drug therapy, Immunoconjugates therapeutic use
- Abstract
Purpose: Patients with recurrent glioblastoma (rGBM) have a poor prognosis. Epidermal growth factor receptor (EGFR) gene amplification is present in ~ 50% of glioblastomas (GBMs). Depatuxizumab mafodotin (depatux-m), formerly ABT-414, is an antibody-drug conjugate that preferentially binds cells with EGFR amplification, is internalized and releases a potent antimicrotubule agent, monomethyl auristatin F (MMAF). Here we report the safety, pharmacokinetics, and efficacy of depatux-m monotherapy at the recommended Phase 2 dose (RPTD) in patients with EGFR-amplified, rGBM., Methods: M12-356 (NCT01800695) is an open-label study with three escalation and expansion cohorts. Sixty-six patients with EGFR-amplified, rGBM were treated with depatux-m monotherapy at 1.25 mg/kg intravenously every 2 weeks. Adults with measurable rGBM, who were bevacizumab-naïve, with EGFR amplification were eligible., Results: Among 66 patients, median age was 58 years (range 35-80). All patients were previously treated with radiotherapy/temozolomide. The most common adverse events (AEs) were eye related (91%), including blurred vision (65%), dry eye (29%), keratitis, and photophobia (27% each). Grade 3/4 AEs occurred in 42% of all patients, and ocular Grade 3/4 AEs occurred in 33% of patients overall. One patient (2%) had a Grade 4 ocular AE. Ocular AEs were manageable and usually resolved once treatment with depatux-m ceased. The objective response rate was 6.8%, the 6-month progression-free survival rate was 28.8%, and the 6-month overall survival rate was 72.5%., Conclusion: Depatux-m monotherapy displayed frequent but mostly Grade 1/2 ocular toxicities. A PFS6 of 28.8% was observed in this rGBM population, warranting further study.
- Published
- 2017
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.