Background The livestock industry is striving to identify antibiotic alternatives to reduce the need to use antibiotics. Postbiotics, such as Saccharomyces cerevisiae fermentation product (SCFP), have been studied and proposed as potential non-antibiotic growth promoters due to their effects on animal growth and the rumen microbiome; however, little is known of their effects on the hind-gut microbiome during the early life of calves. The objective of this study was to measure the effect of in-feed SCFP on the fecal microbiome of Holstein bull calves through 4 months of age. Calves (n = 60) were separated into two treatments: CON (no SCFP added) or SCFP (SmartCare®, Diamond V, Cedar Rapids, IA, in milk replacer and NutriTek®, Diamond V, Cedar Rapids, IA, incorporated into feed), and were blocked by body weight and serum total protein. Fecal samples were collected on d 0, 28, 56, 84, and 112 of the study to characterize the fecal microbiome community. Data were analyzed as a completely randomized block design with repeated measures when applicable. A random-forest regression method was implemented to more fully understand community succession in the calf fecal microbiome of the two treatment groups. Results Richness and evenness of the fecal microbiota increased over time (P P = 0.06). Based on random-forest regression, calf age as predicted by microbiome composition was significantly correlated with the calf physiological age (R2 = 0.927, P −15). Twenty-two “age-discriminatory” ASVs (amplicon sequence variants) were identified in the fecal microbiome that were shared between the two treatment groups. Of these, 6 ASVs (Dorea-ASV308, Lachnospiraceae-ASV288, Oscillospira-ASV311, Roseburia-ASV228, Ruminococcaceae-ASV89 and Ruminoccocaceae-ASV13) in the SCFP group reached their highest abundance in the third month, but they reached their highest abundance in the fourth month in the CON group. All other shared ASVs reached their highest abundance at the same timepoint in both treatment groups. Conclusions Supplementation of SCFP altered the abundance dynamics of age discriminatory ASVs, suggesting a faster maturation of some members of the fecal microbiota in SCFP calves compared to CON calves. These results demonstrate the value of analyzing microbial community succession as a continuous variable to identify the effects of a dietary treatment.