Jean-Yves Coppée, Bernd Jagla, Zoé Rouy, Hugo Varet, Didier Mazel, Claudine Médigue, Oihane Irazoki, Evelyne Krin, Stéphane Cruveiller, Sebastian Aguilar Pierlé, Odile Sismeiro, Susana Campoy, Marie-Agnès Dillies, Plasticité du Génome Bactérien - Bacterial Genome Plasticity (PGB), Institut Pasteur [Paris] (IP)-Centre National de la Recherche Scientifique (CNRS), Transcriptome et Epigénome (PF2), Institut Pasteur [Paris] (IP), Universitat Autònoma de Barcelona (UAB), Génomique métabolique (UMR 8030), Genoscope - Centre national de séquençage [Evry] (GENOSCOPE), Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université d'Évry-Val-d'Essonne (UEVE)-Centre National de la Recherche Scientifique (CNRS), This study was funded by the Institut Pasteur, the Centre National de la Recherche Scientifique (CNRS-UMR3525), the French National Research Agency (ANR-2012-Blanc SVSE3-DynamINT), the French Government’s Investissement d’Avenir program, Laboratoire d’Excellence 'Integrative Biology of Emerging Infectious Diseases' (grant n°ANR-10-LABX-62-IBEID), the Spanish the Ministerio de Economía y Competitividad (BIO2016–77011-R), Generalitat de Catalunya (2014SGR 572), and the European Union Seventh Framework Programme (FP7-HEALTH-2011-single-stage) 'Evolution and Transfer of Antibiotic Resistance' (EvoTAR). The Transcriptome and EpiGenome Platform is a member of the France Génomique consortium (ANR10-NBS-09-08)., ANR-12-BSV3-0015,DynamINT,Recombination des cassettes d'intégron: dynamique in vivo et in vitro(2012), ANR-10-LABX-0062,IBEID,Integrative Biology of Emerging Infectious Diseases(2010), ANR-10-INBS-0009,France-Génomique,Organisation et montée en puissance d'une Infrastructure Nationale de Génomique(2010), European Project: 282004,EC:FP7:HEALTH,FP7-HEALTH-2011-single-stage,EVOTAR(2011), Institut Pasteur [Paris]-Centre National de la Recherche Scientifique (CNRS), Institut Pasteur [Paris], and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université d'Évry-Val-d'Essonne (UEVE)
Background The SOS response is an almost ubiquitous response of cells to genotoxic stresses. The full complement of genes in the SOS regulon for Vibrio species has only been addressed through bioinformatic analyses predicting LexA binding box consensus and in vitro validation. Here, we perform whole transcriptome sequencing from Vibrio cholerae treated with mitomycin C as an SOS inducer to characterize the SOS regulon and other pathways affected by this treatment. Results Comprehensive transcriptional profiling allowed us to define the full landscape of promoters and transcripts active in V. cholerae. We performed extensive transcription start site (TSS) mapping as well as detection/quantification of the coding and non-coding RNA (ncRNA) repertoire in strain N16961. To improve TSS detection, we developed a new technique to treat RNA extracted from cells grown in various conditions. This allowed for identification of 3078 TSSs with an average 5’UTR of 116 nucleotides, and peak distribution between 16 and 64 nucleotides; as well as 629 ncRNAs. Mitomycin C treatment induced transcription of 737 genes and 28 ncRNAs at least 2 fold, while it repressed 231 genes and 17 ncRNAs. Data analysis revealed that in addition to the core genes known to integrate the SOS regulon, several metabolic pathways were induced. This study allowed for expansion of the Vibrio SOS regulon, as twelve genes (ubiEJB, tatABC, smpA, cep, VC0091, VC1190, VC1369–1370) were found to be co-induced with their adjacent canonical SOS regulon gene(s), through transcriptional read-through. Characterization of UV and mitomycin C susceptibility for mutants of these newly identified SOS regulon genes and other highly induced genes and ncRNAs confirmed their role in DNA damage rescue and protection. Conclusions We show that genotoxic stress induces a pervasive transcriptional response, affecting almost 20% of the V. cholerae genes. We also demonstrate that the SOS regulon is larger than previously known, and its syntenic organization is conserved among Vibrio species. Furthermore, this specific co-localization is found in other γ-proteobacteria for genes recN-smpA and rmuC-tatABC, suggesting SOS regulon conservation in this phylum. Finally, we comment on the limitations of widespread NGS approaches for identification of all RNA species in bacteria. Electronic supplementary material The online version of this article (10.1186/s12864-018-4716-8) contains supplementary material, which is available to authorized users.