1. Attenuation of NAD[P]H:quinone oxidoreductase 1 aggravates prostate cancer and tumor cell plasticity through enhanced TGFβ signaling
- Author
-
Roble Bedolla, Addanki P. Kumar, Tim H M Huang, Dinesh Thapa, Robert L. Reddick, Chia Nung Hung, Shih-Bo Huang, Amanda R. Muñoz, Michael A. Liss, Hiroshi Miyamoto, Rita Ghosh, Xiaoyu Yang, and Chun Liang Chen
- Subjects
Male ,0301 basic medicine ,Cell signaling ,Cell Plasticity ,Mice, Nude ,Medicine (miscellaneous) ,medicine.disease_cause ,Article ,General Biochemistry, Genetics and Molecular Biology ,Metastasis ,Mice ,03 medical and health sciences ,Prostate cancer ,0302 clinical medicine ,Circulating tumor cell ,Downregulation and upregulation ,Transforming Growth Factor beta ,Cell Line, Tumor ,NAD(P)H Dehydrogenase (Quinone) ,medicine ,Animals ,Humans ,lcsh:QH301-705.5 ,Cancer ,Chemistry ,Mesenchymal stem cell ,Prostatic Neoplasms ,medicine.disease ,Up-Regulation ,3. Good health ,Gene Expression Regulation, Neoplastic ,Oxidative Stress ,030104 developmental biology ,lcsh:Biology (General) ,030220 oncology & carcinogenesis ,Cancer research ,General Agricultural and Biological Sciences ,Oxidative stress - Abstract
NAD[P]H:quinone oxidoreductase 1 (NQO1) regulates cell fate decisions in response to stress. Oxidative stress supports cancer maintenance and progression. Previously we showed that knockdown of NQO1 (NQO1low) prostate cancer cells upregulate pro-inflammatory cytokines and survival under hormone-deprived conditions. Here, we tested the ability of NQO1low cells to form tumors. We found NQO1low cells form aggressive tumors compared with NQO1high cells. Biopsy specimens and circulating tumor cells showed biochemical recurrent prostate cancer was associated with low NQO1. NQO1 silencing was sufficient to induce SMAD-mediated TGFβ signaling and mesenchymal markers. TGFβ treatment decreased NQO1 levels and induced molecular changes similar to NQO1 knockdown cells. Functionally, NQO1 depletion increased migration and sensitivity to oxidative stress. Collectively, this work reveals a possible new gatekeeper role for NQO1 in counteracting cellular plasticity in prostate cancer cells. Further, combining NQO1 with TGFβ signaling molecules may serve as a better signature to predict biochemical recurrence., Thapa et al find that depletion of the antioxidant enzyme NAD[P]H:Quinone Oxidoreductase 1 (NQO1) accelerates prostate tumorigenesis and induces the epithelial-to-mesenchymal transition by activating TGFβ signaling. They also find that low NQO1 is associated with mesenchymal signature and biochemical recurrence in clinical samples.
- Published
- 2020
- Full Text
- View/download PDF