1. GNPs/Al nanocomposites with high strength and ductility and electrical conductivity fabricated by accumulative roll-compositing
- Author
-
Seong-Woo Choi, Q.S. Mei, Hui Hanyu, X.M. Mei, Cheng-Lin Li, Chen Zihao, Ma Ye, Li Juying, and Chen Feng
- Subjects
Nanocomposite ,Materials science ,High conductivity ,Metals and Alloys ,Condensed Matter Physics ,Microstructure ,Electrical resistivity and conductivity ,Ultimate tensile strength ,Materials Chemistry ,Physical and Theoretical Chemistry ,Composite material ,Elongation ,Ductility ,Dispersion (chemistry) - Abstract
Aluminum matrix composites (AMCs) reinforced with graphene nanoplatelets (GNPs) were fabricated by using an accumulative roll-compositing (ARC) process. Microstructure, mechanical and electrical properties of the nanostructured AMCs were characterized. The results showed that small addition (0.2 vol% and 0.5 vol%) of GNPs can lead to a simultaneous increase in the tensile strength and ductility of the GNPs/Al nanocomposites, as compared with the same processed pure Al. With increasing GNPs content, the tensile strength of the GNPs/Al nanocomposites can be enhanced to 387 MPa with retained elongation of 15%. Meanwhile, the GNPs/Al nanocomposites exhibited a good electrical conductivity of 77.8%โ86.1% that of annealed pure Al. The excellent properties (high strength, high ductility and high conductivity) of the GNPs/Al are associated with the particular ARC process, which facilitates the uniform dispersion of GNPs in the matrix and formation of ultrafine-grained Al matrix. The strengthening and toughening of the GNPs/Al nanocomposites were discussed considering different mechanisms and the unique effect of GNPs.
- Published
- 2021
- Full Text
- View/download PDF