1. Revisiting sulfur H-bonds in proteins: The example of peroxiredoxin AhpE
- Author
-
Lennart Nilsson, Frank De Proft, Mercedes Alonso, Joris Messens, Laura A. H. van Bergen, Anna Palló, Chemistry, Faculty of Sciences and Bioengineering Sciences, Department of Bio-engineering Sciences, and Structural Biology Brussels
- Subjects
Models, Molecular ,0301 basic medicine ,chemistry.chemical_element ,Molecular Dynamics Simulation ,010402 general chemistry ,01 natural sciences ,Article ,Catalysis ,03 medical and health sciences ,Molecular dynamics ,Bacterial Proteins ,Nucleophile ,Computational chemistry ,Catalytic Domain ,Atom ,Cysteine ,Sulfhydryl Compounds ,Multidisciplinary ,biology ,Hydrogen bond ,Water ,Active site ,Hydrogen Bonding ,Hydrogen Peroxide ,Mycobacterium tuberculosis ,Peroxiredoxins ,Sulfur ,Hydrocarbons ,0104 chemical sciences ,Oxygen ,030104 developmental biology ,Biochemistry ,chemistry ,biology.protein ,Peroxiredoxin ,Software - Abstract
In many established methods, identification of hydrogen bonds (H-bonds) is primarily based on pairwise comparison of distances between atoms. These methods often give rise to systematic errors when sulfur is involved. A more accurate method is the non-covalent interaction index, which determines the strength of the H-bonds based on the associated electron density and its gradient. We applied the NCI index on the active site of a single-cysteine peroxiredoxin. We found a different sulfur hydrogen-bonding network to that typically found by established methods and we propose a more accurate equation for determining sulfur H-bonds based on geometrical criteria. This new algorithm will be implemented in the next release of the widely-used CHARMM program (version 41b) and will be particularly useful for analyzing water molecule-mediated H-bonds involving different atom types. Furthermore, based on the identification of the weakest sulfur-water H-bond, the location of hydrogen peroxide for the nucleophilic attack by the cysteine sulfur can be predicted. In general, current methods to determine H-bonds will need to be reevaluated, thereby leading to better understanding of the catalytic mechanisms in which sulfur chemistry is involved.
- Published
- 2016
- Full Text
- View/download PDF