Yusuf Kanca, Ali Günen, Mustafa Serdar Karakaş, Ahmet Çürük, İsmail Hakkı Karahan, Erdoğan Kanca, Mustafa Sabri Gök, Mühendislik ve Doğa Bilimleri Fakültesi -- Metalurji ve Malzeme Mühendisliği Bölümü, Mühendislik ve Doğa Bilimleri Fakültesi -- Makina Mühendisliği Bölümü, Günen, Ali, Kanca, Erdoğan, Çürük, Ahmet, and Hitit Üniversitesi, Mühendislik Fakültesi, Makine Mühendisliği Bölümü
WOS: 000446711300053, The corrosion resistances of three different thermochemical coatings (grown using titanizing, boriding, and borotitanizing treatments) applied to STKM-13A steel surfaces were investigated. The coatings were characterized using optical microscopy, scanning electron microscopy, energy dispersive spectroscopy, X-ray diffractometry, 2D profilometry, and microhardness experiments. The corrosion tests were conducted using both electrochemical and static immersion methods, in 3.5 pct NaCl and 40 pct HF acid solutions, respectively. The corrosion resistance of STKM-13A steel was enhanced after the coating process. The specimens were exposed to more corrosion in the HF solution than in the NaCl solution. The best corrosion resistance was obtained in the borotitanized and borided specimens immersed in the NaCl and HF solutions, respectively. The borided STKM-13A steel sample showed even less cumulative weight loss than Inconel 625 in the static immersion HF acid solution test. This suggests potential use of the borided STKM-13A steel in the uranium production units of nuclear power plants as an alternative to more costly alternatives such as Monel, Inconel, and Hastelloy. (C) The Minerals, Metals & Materials Society and ASM International 2018