1. Intra-database validation of case-identifying algorithms using reconstituted electronic health records from healthcare claims data
- Author
-
Marine Gross-Goupil, Abdelilah Abouelfath, Elisabeth Maillart, Mathieu Roumiguié, N. Thurin, Emmanuelle Bignon, Céline Louapre, Pauline Diez, Francis Guillemin, Patrick Blin, Pauline Bosco-Lévy, Stéphanie Lamarque, Magali Rouyer, Cécile Droz-Perroteau, Olivier Heinzlef, Sylvestre Le Moulec, Jérémy Jové, Régis Lassalle, Michel Soulié, Nicholas Moore, Bruno Brochet, Séverine Lignot, Marc Debouverie, Université de Bordeaux (UB), Bordeaux population health (BPH), Université de Bordeaux (UB)-Institut de Santé Publique, d'Épidémiologie et de Développement (ISPED)-Institut National de la Santé et de la Recherche Médicale (INSERM), Hôpital Saint-André, Hôpital de Rangueil, CHU Toulouse [Toulouse], Clinique Marzet [Pau], Adaptation, mesure et évaluation en santé. Approches interdisciplinaires (APEMAC), Université de Lorraine (UL), Service de neurologie [CHRU Nancy], Centre Hospitalier Régional Universitaire de Nancy (CHRU Nancy), INSERM, Neurocentre Magendie, U1215, Physiopathologie de la Plasticité Neuronale, F-33000 Bordeaux, France, CHU Bordeaux [Bordeaux], Centre d'investigation clinique [Nancy] (CIC), Centre Hospitalier Régional Universitaire de Nancy (CHRU Nancy)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lorraine (UL), Institut du Cerveau et de la Moëlle Epinière = Brain and Spine Institute (ICM), Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP], Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Service de Neurologie [CHU Pitié-Salpêtrière], IFR70-CHU Pitié-Salpêtrière [AP-HP], Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP), centre hospitalier intercommunal de Poissy/Saint-Germain-en-Laye - CHIPS [Poissy], Gestionnaire, Hal Sorbonne Université, Centre Hospitalier Universitaire de Toulouse (CHU Toulouse), Neurocentre Magendie : Physiopathologie de la Plasticité Neuronale (U1215 Inserm - UB), Université de Bordeaux (UB)-Institut François Magendie-Institut National de la Santé et de la Recherche Médicale (INSERM), Institut du Cerveau = Paris Brain Institute (ICM), Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Sorbonne Université (SU)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU), Centre hospitalier intercommunal de Poissy/Saint-Germain-en-Laye - CHIPS [Poissy], Université de Lorraine (UL)-Centre Hospitalier Régional Universitaire de Nancy (CHRU Nancy)-Institut National de la Santé et de la Recherche Médicale (INSERM), and Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Male ,Positive predictive value ,Medicine (General) ,Validation study ,Databases, Factual ,genetic structures ,Epidemiology ,Computer science ,[SDV]Life Sciences [q-bio] ,Reconstituted electronic health record ,Health Informatics ,030204 cardiovascular system & hematology ,Health records ,Negative predictive value ,Multiple sclerosis ,03 medical and health sciences ,External data ,R5-920 ,0302 clinical medicine ,Drug dispensing ,Claims data ,Health care ,Electronic Health Records ,Humans ,030212 general & internal medicine ,business.industry ,Prostate Cancer ,Case-identifying algorithm ,Predictive value ,3. Good health ,[SDV] Life Sciences [q-bio] ,Identification (information) ,Neoplasm Recurrence, Local ,business ,Delivery of Health Care ,Algorithm ,Algorithms ,Claims database ,Research Article - Abstract
Background Diagnosis performances of case-identifying algorithms developed in healthcare database are usually assessed by comparing identified cases with an external data source. When this is not feasible, intra-database validation can present an appropriate alternative. Objectives To illustrate through two practical examples how to perform intra-database validations of case-identifying algorithms using reconstituted Electronic Health Records (rEHRs). Methods Patients with 1) multiple sclerosis (MS) relapses and 2) metastatic castration-resistant prostate cancer (mCRPC) were identified in the French nationwide healthcare database (SNDS) using two case-identifying algorithms. A validation study was then conducted to estimate diagnostic performances of these algorithms through the calculation of their positive predictive value (PPV) and negative predictive value (NPV). To that end, anonymized rEHRs were generated based on the overall information captured in the SNDS over time (e.g. procedure, hospital stays, drug dispensing, medical visits) for a random selection of patients identified as cases or non-cases according to the predefined algorithms. For each disease, an independent validation committee reviewed the rEHRs of 100 cases and 100 non-cases in order to adjudicate on the status of the selected patients (true case/ true non-case), blinded with respect to the result of the corresponding algorithm. Results Algorithm for relapses identification in MS showed a 95% PPV and 100% NPV. Algorithm for mCRPC identification showed a 97% PPV and 99% NPV. Conclusion The use of rEHRs to conduct an intra-database validation appears to be a valuable tool to estimate the performances of a case-identifying algorithm and assess its validity, in the absence of alternative.
- Published
- 2021
- Full Text
- View/download PDF