1. Author Correction: Aberrant activity of mitochondrial NCLX is linked to impaired synaptic transmission and is associated with mental retardation
- Author
-
Fabiana Perocchi, Ivana Savic, Steffen Leiz, Tomer Katoshevsky, Cornelia Daumer-Haas, Daniel Gitler, Yael Amitai, Essam A. Assali, Israel Sekler, Ohad Stoler, Marko Kostic, Holger Prokisch, Alexandra Stavsky, and Ilya A. Fleidervish
- Subjects
Male ,QH301-705.5 ,Long-Term Potentiation ,Presynaptic Terminals ,Medicine (miscellaneous) ,In Vitro Techniques ,Biology ,Neurotransmission ,Hippocampus ,Synaptic Transmission ,Sodium-Calcium Exchanger ,General Biochemistry, Genetics and Molecular Biology ,Mitochondrial Proteins ,Mice ,Text mining ,Intellectual Disability ,Animals ,Humans ,Point Mutation ,Amino Acid Sequence ,Calcium Signaling ,Biology (General) ,Author Correction ,Mice, Knockout ,Neurons ,Neuronal Plasticity ,business.industry ,Calcium signalling ,Cellular neuroscience ,Mitochondria ,Pedigree ,Mice, Inbred C57BL ,Amino Acid Substitution ,Female ,Cardiomyopathies ,General Agricultural and Biological Sciences ,business ,Neuroscience - Abstract
Calcium dynamics control synaptic transmission. Calcium triggers synaptic vesicle fusion, determines release probability, modulates vesicle recycling, participates in long-term plasticity and regulates cellular metabolism. Mitochondria, the main source of cellular energy, serve as calcium signaling hubs. Mitochondrial calcium transients are primarily determined by the balance between calcium influx, mediated by the mitochondrial calcium uniporter (MCU), and calcium efflux through the sodium/lithium/calcium exchanger (NCLX). We identified a human recessive missense SLC8B1 variant that impairs NCLX activity and is associated with severe mental retardation. On this basis, we examined the effect of deleting NCLX in mice on mitochondrial and synaptic calcium homeostasis, synaptic activity, and plasticity. Neuronal mitochondria exhibited basal calcium overload, membrane depolarization, and a reduction in the amplitude and rate of calcium influx and efflux. We observed smaller cytoplasmic calcium transients in the presynaptic terminals of NCLX-KO neurons, leading to a lower probability of release and weaker transmission. In agreement, synaptic facilitation in NCLX-KO hippocampal slices was enhanced. Importantly, deletion of NCLX abolished long term potentiation of Schaffer collateral synapses. Our results show that NCLX controls presynaptic calcium transients that are crucial for defining synaptic strength as well as short- and long-term plasticity, key elements of learning and memory processes.
- Published
- 2021