1. Dimension dependent hypercontractivity for Gaussian kernels
- Author
-
François Bolley, Dominique Bakry, Ivan Gentil, Institut de Mathématiques de Toulouse UMR5219 (IMT), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), CEntre de REcherches en MAthématiques de la DEcision (CEREMADE), Centre National de la Recherche Scientifique (CNRS)-Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Institut Camille Jordan [Villeurbanne] (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), ANR-08-BLAN-0242,EVOL,Dissipative Evolutions and Convergence to Equilibrium(2008), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Institut Camille Jordan (ICJ), Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), and Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Statistics and Probability ,Large class ,Pure mathematics ,Trace (linear algebra) ,Markov kernel ,Gaussian ,Logarithmic Sobolev inequality ,Transportation inequality ,01 natural sciences ,010104 statistics & probability ,symbols.namesake ,Mathematics::Probability ,Dimension (vector space) ,Curvature-dimension criterion ,FOS: Mathematics ,Hypercontractive bound ,0101 mathematics ,Mathematics ,Diffusion semigroup ,Markov chain ,Semigroup ,Probability (math.PR) ,010102 general mathematics ,[MATH.MATH-PR]Mathematics [math]/Probability [math.PR] ,symbols ,Statistics, Probability and Uncertainty ,Mathematics - Probability ,Analysis - Abstract
We derive sharp, local and dimension dependent hypercontractive bounds on the Markov kernel of a large class of diffusion semigroups. Unlike the dimension free ones, they capture refined properties of Markov kernels, such as trace estimates. They imply classical bounds on the Ornstein-Uhlenbeck semigroup and a dimensional and refined (transportation) Talagrand inequality when applied to the Hamilton-Jacobi equation. Hypercontractive bounds on the Ornstein-Uhlenbeck semigroup driven by a non-diffusive L\'evy semigroup are also investigated. Curvature-dimension criteria are the main tool in the analysis., Comment: 24 pages
- Published
- 2011
- Full Text
- View/download PDF