1. Mycorrhiza Specificity: Its Role in the Development and Function of Common Mycelial Networks
- Author
-
Randy Molina and Thomas R. Horton
- Subjects
biology ,Ecology ,fungi ,food and beverages ,Plant community ,Fungus ,Ecological succession ,biology.organism_classification ,Ectomycorrhiza ,Seral community ,Botany ,Ecosystem ,Mycorrhiza ,Mycelium - Abstract
The establishment of common mycelial networks by mycorrhizal fungi shared between host plants depends on the ability of neighboring plants to enter into mycorrhizal associations with compatible fungal species. Such compatibility is governed by the potential mycorrhiza specificities of the symbionts. Mycorrhiza specificities exist along a continuum from low specificity (association with multiple partners) to high specificity (association with one or few partners). Although the ability of symbionts to form mycorrhizas may be largely governed by host-fungus gene interactions as influenced by co-evolutionary events, mycorrhizal associations in natural ecosystems can also be influenced by environmental factors (e.g. soil) and biological factors (e.g. different neighboring host species), phenomena referred to as “ecological specificity.” For example, in natural settings, mycorrhizal fungi often express “host preference” wherein fungi may be more common on a particular host in mixed-host settings than would be expected by random species assemblage within the fungal and plant communities. Mycorrhiza specificity phenomena significantly influence plant community dynamics, particularly plant succession. Early seral plants can positively affect the establishment of later-seral plants by maintaining commonly shared mycorrhizal fungi, and thus affecting the function of common mycelial networks over time. Such knowledge provides guidance for ecosystem managers to maintain “legacy” early -seral plants that benefit later-seral plants via shared mycorrhizal fungus species. Understanding specificity phenomena is also crucial for predicting the successful migration of plants and compatible mycorrhizal fungi during climate change. We review mycorrhiza specificity terminology and types of specificity phenomena, and suggest use of common terms to provide consistency in addressing this research topic. We also provide extensive examples from diverse ecosystems on the ability (or inability) of neighboring plants to develop common mycelial networks.
- Published
- 2015
- Full Text
- View/download PDF