1. Nickel-catalyzed electrophiles-controlled enantioselective reductive arylative cyclization and enantiospecific reductive alkylative cyclization of 1,6-enynes.
- Author
-
Liu, Wenfeng, Xing, Yunxin, Yan, Denghong, Kong, Wangqing, and Shen, Kun
- Subjects
RING formation (Chemistry) ,OXIDATIVE addition ,ALKYL bromides ,ARYL iodides ,ARYL halides ,DRUG synthesis ,ALLYLIC amination - Abstract
Transition metal-catalyzed asymmetric cyclization of 1,6-enynes is a powerful tool for the construction of chiral nitrogen-containing heterocycles. Despite notable achievements, these transformations have been largely limited to the use of aryl or alkenyl metal reagents, and stereoselective or stereospecific alkylative cyclization of 1,6-enynes remains unexploited. Herein, we report Ni-catalyzed enantioselective reductive anti-arylative cyclization of 1,6-enynes with aryl iodides, providing enantioenriched six-membered carbo- and heterocycles in good yields with excellent enantioselectivities. Additionally, we have realized Ni-catalyzed enantiospecific reductive cis-alkylative cyclization of 1,6-enynes with alkyl bromides, furnishing chiral five-membered heterocycles with high regioselectivity and stereochemical fidelity. Mechanistic studies reveal that the arylative cyclization of 1,6-enynes is initiated by the oxidative addition of Ni(0) to aryl halides and the alkylative cyclization is triggered by the oxidative addition of Ni(0) to allylic acetates. The utility of this strategy is further demonstrated in the enantioselective synthesis of the antiepileptic drug Brivaracetam. Transition metal-catalyzed asymmetric cyclization of 1,6-enynes is a powerful tool for the construction of chiral nitrogen-containing heterocycles, but limiting to the use of aryl or alkenyl metal reagents. Here, the authors report Ni-catalyzed enantioselective anti-arylative cyclization and enantiospecific cis-alkylative cyclization of 1,6-enynes. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF