1. Advanced removal of phosphorus from urban sewage using chemical precipitation by Fe-Al composite coagulants.
- Author
-
Xu, Hongbin, Wei, Songyu, Li, Guoqiang, and Guo, Baolei
- Subjects
- *
PRECIPITATION (Chemistry) , *COAGULANTS , *X-ray photoelectron spectroscopy , *SEWAGE , *PHOSPHORUS , *SCANNING electron microscopes - Abstract
Phosphorus (P) removal is a significant issue in wastewater treatment. This study applies Fe-Al composite coagulant to the advanced treatment of different P forms in biological effluent. For 90% total P removal, the dosage of FeCl3-AlCl3 composite coagulant reduces by 27.19% and 43.28% than FeCl3 and AlCl3 only, respectively. Changes in effluent P forms could explain the phenomenon of composite coagulant dosage reduction. The suspended P in the effluent of composite coagulant is easier removed by precipitation than single coagulant. In this study, the hydrolysis speciations of Fe3+, Fe2+, and Al3+ at a pH range are calculated by Visual MINTEQ. Changes in the morphology of metal hydroxides correlate with P removal at pH 4–9. Besides, analyses of scanning electron microscope (SEM), Fourier transformed infrared (FTIR), and X-ray photoelectron spectroscopy (XPS) are performed on the coagulation precipitations. Fe2+ reacts directly with P to form flocs of Fe3(PO4)2, and Al2(SO4)3 assists in the sedimentation of the small-volume flocs. Al13 is a significant hydrolysis product of Al3+, and Fe and P would substitute for the peripheral AlVI of the Al13 structure to form stable Fe–O–Al covalent bonds. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF