1. JMFEEL-Net: a joint multi-scale feature enhancement and lightweight transformer network for crowd counting.
- Author
-
Wang, Mingtao, Zhou, Xin, and Chen, Yuanyuan
- Subjects
TRANSFORMER models ,CONVOLUTIONAL neural networks ,SENSOR networks ,TEXT recognition ,COUNTING - Abstract
Crowd counting based on convolutional neural networks (CNNs) has made significant progress in recent years. However, the limited receptive field of CNNs makes it challenging to capture global features for comprehensive contextual modeling, resulting in insufficient accuracy in count estimation. In comparison, vision transformer (ViT)-based counting networks have demonstrated remarkable performance by exploiting their powerful global contextual modeling capabilities. However, ViT models are associated with higher computational costs and training difficulty. In this paper, we propose a novel network named JMFEEL-Net, which utilizes joint multi-scale feature enhancement and lightweight transformer to improve crowd counting accuracy. Specifically, we use a high-resolution CNN as the backbone network to generate high-resolution feature maps. In the backend network, we propose a multi-scale feature enhancement module to address the problem of low recognition accuracy caused by multi-scale variations, especially when counting small-scale objects in dense scenes. Furthermore, we introduce an improved lightweight ViT encoder to effectively model complex global contexts. We also adopt a multi-density map supervision strategy to learn crowd distribution features from feature maps of different resolutions, thereby improving the quality and training efficiency of the density maps. To validate the effectiveness of the proposed method, we conduct extensive experiments on four challenging datasets, namely ShanghaiTech Part A/B, UCF-QNRF, and JHU-Crowd++, achieving very competitive counting performance. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF