1. A New Fuzzy Co-clustering Algorithm for Categorization of Datasets with Overlapping Clusters.
- Author
-
Li, Xue, Zaïane, Osmar R., Li, Zhanhuai, Tjhi, William-Chandra, and Chen, Lihui
- Abstract
Fuzzy co-clustering is a method that performs simultaneous fuzzy clustering of objects and features. In this paper, we introduce a new fuzzy co-clustering algorithm for high-dimensional datasets called Cosine-Distance-based & Dual-partitioning Fuzzy Co-clustering (CODIALING FCC). Unlike many existing fuzzy co-clustering algorithms, CODIALING FCC is a dual-partitioning algorithm. It clusters the features in the same manner as it clusters the objects, that is, by partitioning them according to their natural groupings. It is also a cosine-distance-based algorithm because it utilizes the cosine distance to capture the belongingness of objects and features in the co-clusters. Our main purpose of introducing this new algorithm is to improve the performance of some prominent existing fuzzy co-clustering algorithms in dealing with datasets with high overlaps. In our opinion, this is very crucial since most real-world datasets involve significant amount of overlaps in their inherent clustering structures. We discuss how this improvement can be made through the dual-partitioning formulation adopted. Experimental results on a toy problem and five large benchmark document datasets demonstrate the effectiveness of CODIALING FCC in handling overlaps better. [ABSTRACT FROM AUTHOR]
- Published
- 2006
- Full Text
- View/download PDF