1. Bone Marrow and Wharton's Jelly Mesenchymal Stromal Cells are Ineffective for Myocardial Repair in an Immunodeficient Rat Model of Chronic Ischemic Cardiomyopathy.
- Author
-
Tang, Xian-Liang, Nasr, Marjan, Zheng, Shirong, Zoubul, Taylor, Stephan, Jonah K., Uchida, Shizuka, Singhal, Richa, Khan, Aisha, Gumpert, Anna, Bolli, Roberto, and Wysoczynski, Marcin
- Subjects
- *
STROMAL cells , *BONE marrow , *ANIMAL disease models , *CARDIOMYOPATHIES , *JELLY , *TREATMENT effectiveness - Abstract
Background: Although cell therapy provides benefits for outcomes of heart failure, the most optimal cell type to be used clinically remains unknown. Most of the cell products used for therapy in humans require in vitro expansion to obtain a suitable number of cells for treatment; however, the clinical background of the donor and limited starting material may result in the impaired proliferative and reparative capacity of the cells expanded in vitro. Wharton's jelly mesenchymal cells (WJ MSCs) provide a multitude of advantages over adult tissue-derived cell products for therapy. These include large starting tissue material, superior proliferative capacity, and disease-free donors. Thus, WJ MSC if effective would be the most optimal cell source for clinical use. Objectives: This study evaluated the therapeutic efficacy of Wharton's jelly (WJ) and bone marrow (BM) mesenchymal stromal cells (MSCs) in chronic ischemic cardiomyopathy in rats. Methods: Human WJ MSCs and BM MSCs were expanded in vitro, characterized, and evaluated for therapeutic efficacy in a immunodeficient rat model of ischemic cardiomyopathy. Cardiac function was evaluated with hemodynamics and echocardiography. The extent of cardiac fibrosis, hypertrophy, and inflammation was assessed with histological analysis. Results: In vitro analysis revealed that WJ MSCs and BM MSCs are morphologically and immunophenotypically indistinguishable. Nevertheless, the functional analysis showed that WJ MSCs have a superior proliferative capacity, less senescent phenotype, and distinct transcriptomic profile compared to BM MSC. WJ MSCs and BM MSC injected in rat hearts chronically after MI produced a small, but not significant improvement in heart structure and function. Histological analysis showed no difference in the scar size, collagen content, cardiomyocyte cross-sectional area, and immune cell count. Conclusions: Human WJ and BM MSC have a small but not significant effect on cardiac structure and function when injected intramyocardially in immunodeficient rats chronically after MI. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF