1. On the forecastability of food insecurity.
- Author
-
Foini, Pietro, Tizzoni, Michele, Martini, Giulia, Paolotti, Daniela, and Omodei, Elisa
- Subjects
FOOD security ,EXTREME weather ,FOOD consumption ,ECONOMIC shock ,REGRESSION trees ,TIME series analysis ,FORECASTING - Abstract
Food insecurity, defined as the lack of physical or economic access to safe, nutritious and sufficient food, remains one of the main challenges included in the 2030 Agenda for Sustainable Development. Near real-time data on the food insecurity situation collected by international organizations such as the World Food Programme can be crucial to monitor and forecast time trends of insufficient food consumption levels in countries at risk. Here, using food consumption observations in combination with secondary data on conflict, extreme weather events and economic shocks, we build a forecasting model based on gradient boosted regression trees to create predictions on the evolution of insufficient food consumption trends up to 30 days in to the future in 6 countries (Burkina Faso, Cameroon, Mali, Nigeria, Syria and Yemen). Results show that the number of available historical observations is a key element for the forecasting model performance. Among the 6 countries studied in this work, for those with the longest food insecurity time series, that is Syria and Yemen, the proposed forecasting model allows to forecast the prevalence of people with insufficient food consumption up to 30 days into the future with higher accuracy than a naive approach based on the last measured prevalence only. The framework developed in this work could provide decision makers with a tool to assess how the food insecurity situation will evolve in the near future in countries at risk. Results clearly point to the added value of continuous near real-time data collection at sub-national level. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF