1. Structural heterogeneity assessment among the isoforms of fungal 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase: a comparative in silico perspective.
- Author
-
Pramanik, Krishnendu and Mandal, Narayan Chandra
- Subjects
FUNGAL proteins ,AMINO acid residues ,AMINO acid sequence ,FUNGAL enzymes ,DEAMINASES ,PROTEIN models ,MICROBIAL enzymes - Abstract
Background: The primary amino acid sequence of a protein is a translated version from its gene sequence which carries important messages and information concealed therein. The present study unveils the structure-function and evolutionary aspects of 1-aminocyclopropane-1-carboxylic acid deaminase (ACCD) proteins of fungal origin. ACCD, an important plant growth-promoting microbial enzyme, is less frequent in fungi compared to bacteria. Hence, an inclusive understanding of fungal ACC deaminases (fACCD) has brought forth here. Results: In silico investigation of 40 fACCD proteins recovered from NCBI database reveals that fACCD are prevalent in Colletotrichum (25%), Fusarium (15%), and Trichoderma (10%). The fACCD were found 16.18–82.47 kDa proteins having 149–750 amino acid residues. The enzyme activity would be optimum in a wide range of pH having isoelectric points 4.76–10.06. Higher aliphatic indices (81.49–100.13) and instability indices > 40 indicated the thermostability nature. The secondary structural analysis further validates the stability owing to higher α-helices. Built tertiary protein models designated as ACCNK1–ACCNK40 have been deposited in the PMDB with accessions PM0083418–39 and PM0083476–93. All proteins were found as homo-dimer except ACCNK13, a homo-tetramer. Conclusions: Hence, these anticipated features would facilitate to explore and identify novel variants of fungal ACCD in vitro aiming to industrial-scale applications. Highlights: • First comprehensive in silico annotation of fungal ACC deaminases (fACCD). • Colletotrichum, Fusarium, and Trichoderma are predominant to possess fACCD. • fACCD are 16.18–82.47 kDa proteins with optimal pH between 4.76 and 10.06. • Majority are thermostable with higher aliphatic indices and instability indices < 40. • fACCD are found as homo-dimer except ACCNK13, a homo-tetramer. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF