Hao, Jie, Diao, Huajie, Su, Yuan, Wu, Shuaikai, Gao, Yangyang, Liang, Wenjun, Wang, Ge, Wang, Changhui, Yang, Xiuyun, and Dong, Kuanhu
Background and aims: Nitrogen (N) addition affects plant biodiversity and community structure, subsequently altering the stability of above-ground net primary productivity (ANPP) in grassland ecosystems. However, the effect of adding different nitrogen compounds and their subsequent interactions with mowing on the stability of both below-ground net primary productivity (BNPP) and total net primary productivity (TNPP) are largely unknown.This study compared the impact of adding two nitrogen compounds, NH4NO3 and urea, on the temporal stability of ANPP, BNPP, and TNPP in mowed and unmowed saline-alkaline grasslands.We found that the ANPP temporal stability in unmowed grasslands was not affected by NH4NO3 addition but increased with urea addition. Conversely, the ANPP temporal stability in mowed grasslands decreased with NH4NO3 addition and was not affected by urea addition. Mowing decoupled the ANPP and BNPP temporal stability responses to nitrogen addition. Without mowing, the BNPP temporal stability in response to adding different forms of nitrogen aligned with that of ANPP; however, with mowing, the BNPP temporal stability was not affected by adding NH4NO3 or urea, exhibiting an inconsistent trend of change in comparison to the ANPP temporal stability. The ANPP resistance indirectly regulates the response of the BNPP temporal stability to nitrogen addition in unmowed grasslands, whereas the BNPP temporal stability was not affected by plant above-ground indicators in mowed grasslands.Overall, our study addresses the scarcity of research on ecosystem temporal stability in saline-alkaline grasslands and demonstrates that mowing management can regulate the effects of different forms of nitrogen addition on ecosystem stability.Methods: Nitrogen (N) addition affects plant biodiversity and community structure, subsequently altering the stability of above-ground net primary productivity (ANPP) in grassland ecosystems. However, the effect of adding different nitrogen compounds and their subsequent interactions with mowing on the stability of both below-ground net primary productivity (BNPP) and total net primary productivity (TNPP) are largely unknown.This study compared the impact of adding two nitrogen compounds, NH4NO3 and urea, on the temporal stability of ANPP, BNPP, and TNPP in mowed and unmowed saline-alkaline grasslands.We found that the ANPP temporal stability in unmowed grasslands was not affected by NH4NO3 addition but increased with urea addition. Conversely, the ANPP temporal stability in mowed grasslands decreased with NH4NO3 addition and was not affected by urea addition. Mowing decoupled the ANPP and BNPP temporal stability responses to nitrogen addition. Without mowing, the BNPP temporal stability in response to adding different forms of nitrogen aligned with that of ANPP; however, with mowing, the BNPP temporal stability was not affected by adding NH4NO3 or urea, exhibiting an inconsistent trend of change in comparison to the ANPP temporal stability. The ANPP resistance indirectly regulates the response of the BNPP temporal stability to nitrogen addition in unmowed grasslands, whereas the BNPP temporal stability was not affected by plant above-ground indicators in mowed grasslands.Overall, our study addresses the scarcity of research on ecosystem temporal stability in saline-alkaline grasslands and demonstrates that mowing management can regulate the effects of different forms of nitrogen addition on ecosystem stability.Results: Nitrogen (N) addition affects plant biodiversity and community structure, subsequently altering the stability of above-ground net primary productivity (ANPP) in grassland ecosystems. However, the effect of adding different nitrogen compounds and their subsequent interactions with mowing on the stability of both below-ground net primary productivity (BNPP) and total net primary productivity (TNPP) are largely unknown.This study compared the impact of adding two nitrogen compounds, NH4NO3 and urea, on the temporal stability of ANPP, BNPP, and TNPP in mowed and unmowed saline-alkaline grasslands.We found that the ANPP temporal stability in unmowed grasslands was not affected by NH4NO3 addition but increased with urea addition. Conversely, the ANPP temporal stability in mowed grasslands decreased with NH4NO3 addition and was not affected by urea addition. Mowing decoupled the ANPP and BNPP temporal stability responses to nitrogen addition. Without mowing, the BNPP temporal stability in response to adding different forms of nitrogen aligned with that of ANPP; however, with mowing, the BNPP temporal stability was not affected by adding NH4NO3 or urea, exhibiting an inconsistent trend of change in comparison to the ANPP temporal stability. The ANPP resistance indirectly regulates the response of the BNPP temporal stability to nitrogen addition in unmowed grasslands, whereas the BNPP temporal stability was not affected by plant above-ground indicators in mowed grasslands.Overall, our study addresses the scarcity of research on ecosystem temporal stability in saline-alkaline grasslands and demonstrates that mowing management can regulate the effects of different forms of nitrogen addition on ecosystem stability.Conclusions: Nitrogen (N) addition affects plant biodiversity and community structure, subsequently altering the stability of above-ground net primary productivity (ANPP) in grassland ecosystems. However, the effect of adding different nitrogen compounds and their subsequent interactions with mowing on the stability of both below-ground net primary productivity (BNPP) and total net primary productivity (TNPP) are largely unknown.This study compared the impact of adding two nitrogen compounds, NH4NO3 and urea, on the temporal stability of ANPP, BNPP, and TNPP in mowed and unmowed saline-alkaline grasslands.We found that the ANPP temporal stability in unmowed grasslands was not affected by NH4NO3 addition but increased with urea addition. Conversely, the ANPP temporal stability in mowed grasslands decreased with NH4NO3 addition and was not affected by urea addition. Mowing decoupled the ANPP and BNPP temporal stability responses to nitrogen addition. Without mowing, the BNPP temporal stability in response to adding different forms of nitrogen aligned with that of ANPP; however, with mowing, the BNPP temporal stability was not affected by adding NH4NO3 or urea, exhibiting an inconsistent trend of change in comparison to the ANPP temporal stability. The ANPP resistance indirectly regulates the response of the BNPP temporal stability to nitrogen addition in unmowed grasslands, whereas the BNPP temporal stability was not affected by plant above-ground indicators in mowed grasslands.Overall, our study addresses the scarcity of research on ecosystem temporal stability in saline-alkaline grasslands and demonstrates that mowing management can regulate the effects of different forms of nitrogen addition on ecosystem stability. [ABSTRACT FROM AUTHOR]