1. Towards the development of a human in vitro model of the blood–brain barrier for virus-associated acute encephalopathy: assessment of the time- and concentration-dependent effects of TNF-α on paracellular tightness.
- Author
-
Maeda, Hajime, Hashimoto, Koichi, Go, Hayato, Miyazaki, Kyohei, Sato, Masatoki, Kawasaki, Yukihiko, Momoi, Nobuo, and Hosoya, Mitsuaki
- Abstract
The pathogenesis of virus-associated acute encephalopathy (VAE) involves brain edema caused by disruption of the blood–brain barrier (BBB). We aimed to develop an in vitro VAE model using an in vitro BBB model, to evaluate the dynamics of vascular dysfunction caused by tumor necrosis factor (TNF)-α. A co-culture model, consisting of Transwell®-grown human brain microvascular endothelial cells and pericytes, was treated with serially diluted TNF-α. Transendothelial electrical resistance (TER) was measured using cellZscope®. A permeability assay, using fluorescein isothiocyanate-conjugated sodium or dextran, was performed. Changes in claudin-5 localization and expression after TNF-α treatment were observed using immunofluorescence staining and western blot analysis. The TER decreased and permeability increased after TNF-α treatment; recovery time was dependent on TNF-α concentration. Claudin-5 was delocalized after TNF-α treatment and recovered in a TNF-α concentration-dependent manner. The expression of claudin-5 decreased 24 h after the TNF-α treatment and completely recovered 48 h after TNF-α treatment. Claudin-5 delocalization was likely associated with vascular hyperpermeability. To conclude, we evaluated vascular endothelial cell permeability and injury in VAE using an in vitro BBB model treated with TNF-α. This system can be useful for developing novel therapeutic strategies for VAE and designing treatments that target vascular permeability. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF