1. Preclinical identification of acute coronary syndrome without high sensitivity troponin assays using machine learning algorithms.
- Author
-
Goldschmied, Andreas, Sigle, Manuel, Faller, Wenke, Heurich, Diana, Gawaz, Meinrad, and Müller, Karin Anne Lydia
- Subjects
ACUTE coronary syndrome ,MACHINE learning ,DEEP learning ,CORONARY occlusion ,MAJOR adverse cardiovascular events ,TROPONIN - Abstract
Preclinical management of patients with acute chest pain and their identification as candidates for urgent coronary revascularization without the use of high sensitivity troponin essays remains a critical challenge in emergency medicine. We enrolled 2760 patients (average age 70 years, 58.6% male) with chest pain and suspected ACS, who were admitted to the Emergency Department of the University Hospital Tübingen, Germany, between August 2016 and October 2020. Using 26 features, eight Machine learning models (non-deep learning models) were trained with data from the preclinical rescue protocol and compared to the "TropOut" score (a modified version of the "preHEART" score which consists of history, ECG, age and cardiac risk but without troponin analysis) to predict major adverse cardiac event (MACE) and acute coronary artery occlusion (ACAO). In our study population MACE occurred in 823 (29.8%) patients and ACAO occurred in 480 patients (17.4%). Interestingly, we found that all machine learning models outperformed the "TropOut" score. The VC and the LR models showed the highest area under the receiver operating characteristic (AUROC) for predicting MACE (AUROC = 0.78) and the VC showed the highest AUROC for predicting ACAO (AUROC = 0.81). A SHapley Additive exPlanations (SHAP) analyses based on the XGB model showed that presence of ST-elevations in the electrocardiogram (ECG) were the most important features to predict both endpoints. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF