1. Evaluation of indoor passive pollen sedimentation over 1 year: a possible source of contamination?
- Author
-
Loublier, Yves
- Abstract
The study aimed to evaluate the possible contamination by passive indoor pollen sedimentation in a laboratory where routine pollen analyses were conducted, but where no particular laboratory policies were adopted to limit contamination. Gravimetric pollen deposition was observed on traps (petri dishes soaked with glycerol) set in the palynology laboratory, under an extractor hood and on the bench beside it over 1 year (1995–1996), and in an air filtered room in a flow cabinet and on its roof over 1 month for comparison. Under the extractor hood, three types of airborne particles were deposited: pollen grains, spores and algae, representing 32.35, 67.28 and 0.37%, respectively, of the total sedimented particles over 1 year. The number of pollen grains deposited on the surface trap ranged from 0 (27 November to 4 December 1995) to 707 (10–18 April 1995). The highest number of taxa during a weekly collection was 23 (9–15 May 1995). The pollen flora represented by anemophilous pollen (>90% of the trapped pollen) was related to the vegetation next to the laboratory: Acer, Carpinus, Castanea, Corylus, Cupressaceae, Pinus, Quercus, Salix, Taxus for trees and shrubs and Artemisia, Brassicaceae, Plantago, Poaceae, and Urticaceae for grasses and weeds. Indoor pollen deposition corresponded to the period of the outdoor pollination (macroscopic field observation) which lasted from March to the beginning of August. However, some pollen were almost always present in the collection ( Poaceae, Salix, Castanea, Betula), reflecting the occurrence of pollen grains in the atmosphere out of the pollination period. Moreover, about five times more entomophilous pollen was found under the extractor hood compared to the other area of the laboratory; even in the flow cabinet of the air filtered room, 237 particles were captured (versus only 15 on the roof). These data suggest a possible human contamination during operations under the extractor hood or in the flow cabinet. Although few airborne pollen were found, possible contamination has to be considered in investigations where even low pollen quantities are of interest. [ABSTRACT FROM AUTHOR]
- Published
- 1998
- Full Text
- View/download PDF