An analysis of the genome structure of soybean cultivars was conducted to determine if cultivars are composed of large regions of chromosomes inherited intact from one parent (indicative of minimal recombination) or if the chromosomes are a mixture of one parent's DNA interspersed with the DNA from the other parent (indicative of maximal recombination). Twenty-one single-cross-derived and 5 single-backcross-derived soybean cultivars and their immediate parents (47 genotypes) were analyzed at 89 RFLP loci to determine the minimal number and distribution of recombination events detected. Cultivars derived from single-cross and single-backcross breeding programs showed an average of 5.2 and 8.0 recombination events per cultivar, respectively. A homogeneity Chi-square test based upon a Poisson distribution of recombination events across 13 linkage groups indicated that the number of recombinations observed among linkage groups was random for the single-cross cultivars, but not for the single-backcross-derived cultivars. A twotailed t-test demonstrated that for some linkage groups, the number of recombinations per map unit exceeded the confidence interval developed from a t-distribution of recombinations standardized for map unit distance. Paired t-tests of the number of recombinations observed between linkage-group ends and the mid-portion of the linkage groups indicated that during the development of the cultivars analyzed in this study more recombinations were associated with the ends of linkage groups than with the middle region. Detailed analysis of each linkage group revealed that large portions of linkage groups D, F, and G were inherited intact from one parent in several cultivars. A portion of linkage group G, in contrast, showed more recombination events than expected, based on genetic distance. These analyses suggest that breeders may have selected against recombination events where agronomically favorable combinations of alleles are present in one parent, and for recombination in areas where agronomically favorable combinations of alleles are not present in either parent. [ABSTRACT FROM AUTHOR]