1. Multi-omics and Multi-VOIs to predict esophageal fistula in esophageal cancer patients treated with radiotherapy.
- Author
-
Guo, Wei, Li, Bing, Xu, Wencai, Cheng, Chen, Qiu, Chengyu, Sam, Sai-kit, Zhang, Jiang, Teng, Xinzhi, Meng, Lingguang, Zheng, Xiaoli, Wang, Yuan, Lou, Zhaoyang, Mao, Ronghu, Lei, Hongchang, Zhang, Yuanpeng, Zhou, Ta, Li, Aijia, Cai, Jing, and Ge, Hong
- Abstract
Objective: This study aimed to develop a prediction model for esophageal fistula (EF) in esophageal cancer (EC) patients treated with intensity-modulated radiation therapy (IMRT), by integrating multi-omics features from multiple volumes of interest (VOIs). Methods: We retrospectively analyzed pretreatment planning computed tomographic (CT) images, three-dimensional dose distributions, and clinical factors of 287 EC patients. Nine groups of features from different combination of omics [Radiomics (R), Dosiomics (D), and RD (the combination of R and D)], and VOIs [esophagus (ESO), gross tumor volume (GTV), and EG (the combination of ESO and GTV)] were extracted and separately selected by unsupervised (analysis of variance (ANOVA) and Pearson correlation test) and supervised (Student T test) approaches. The final model performance was evaluated using five metrics: average area under the receiver-operator-characteristics curve (AUC), accuracy, precision, recall, and F1 score. Results: For multi-omics using RD features, the model performance in EG model shows: AUC, 0.817 ± 0.031; 95% CI 0.805, 0.825; p < 0.001, which is better than single VOI (ESO or GTV). Conclusion: Integrating multi-omics features from multi-VOIs enables better prediction of EF in EC patients treated with IMRT. The incorporation of dosiomics features can enhance the model performance of the prediction. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF