1. Use of a dual genetic system to decipher exocrine cell fate conversions in the adult pancreas.
- Author
-
Zhao, Huan, Huang, Xiuzhen, Liu, Zixin, Lai, Liang, Sun, Ruilin, Shen, Ruling, Li, Yan, He, Lingjuan, Pu, Wenjuan, Lv, Zan, Li, Yi, Han, Ximeng, Liu, Xiuxiu, and Zhou, Bin
- Subjects
PANCREATIC acinar cells ,PANCREAS ,EXOCRINE glands ,CYTOLOGY ,PANCREATIC duct ,CELL proliferation ,STEM cells - Abstract
Unraveling cell fate plasticity during tissue homeostasis and repair can reveal actionable insights for stem cell biology and regenerative medicine. In the pancreas, it remains controversial whether lineage transdifferentiation among the exocrine cells occur under pathophysiological conditions. Here, to address this question, we used a dual recombinase-mediated genetic system that enables simultaneous tracing of pancreatic acinar and ductal cells using two distinct genetic reporters, avoiding the "ectopic" labeling by Cre-loxP recombination system. We found that acinar-to-ductal transdifferentiation occurs after pancreatic duct ligation or during caerulein-induced pancreatitis, but not during homeostasis or after partial pancreatectomy. On the other hand, pancreatic ductal cells contribute to new acinar cells after significant acinar cell loss. By genetic tracing of cell proliferation, we also quantify the cell proliferation dynamics and deduce the turnover rate of pancreatic exocrine lineages during homeostasis. Together, these results suggest that the lineage transdifferentiation happens between acinar cells and ductal cells in the pancreatic exocrine glands under specific conditions. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF