1. Characteristics of tetracycline antibiotic resistance gene enrichment and migration in soil–plant system.
- Author
-
Wang, Lei, Yu, Lina, and Cai, Baiyan
- Subjects
LIVESTOCK breeding ,MOBILE genetic elements ,HORIZONTAL gene transfer ,HEAVY metal toxicology ,POLLUTANTS ,ENVIRONMENTAL risk - Abstract
Tetracycline Resistance Genes (TRGs) have received widespread attention in recent years, as they are a novel environmental pollutant that can rapidly accumulate and migrate in soil plant systems through horizontal gene transfer (HGT), posing a potential threat to food safety and public health. This article systematically reviews the pollution sources, enrichment, and migration characteristics of TRGs in soil. The main sources of TRGs include livestock manure and contaminated wastewater, especially in intensive farming environments where TRGs pollution is more severe. In soil, TRGs diffuse horizontally between bacteria and migrate to plant tissues through mechanisms such as plasmid conjugation, integron mediation, and phage transduction. The migration of TRGs is not limited to the soil interior, and increasing evidence suggests that they can also enter the plant system through plant root absorption and the HGT pathway of endophytic bacteria, ultimately accumulating in plant roots, stems, leaves, fruits, and other parts. This process has a direct impact on human health, especially when TRGs are found in crops such as vegetables, which may be transmitted to the human body through the food chain. In addition, this article also deeply analyzed various factors that affect the migration of TRGs, including the residual level of tetracycline in soil, the type and concentration of microorganisms, heavy metal pollution, and the presence of new pollutants such as microplastics. These factors significantly affect the enrichment rate and migration mode of TRGs in soil. In addition, two technologies that can effectively eliminate TRGs in livestock breeding environments were introduced, providing reference for healthy agricultural production. The article concludes by summarizing the shortcomings of current research on TRGs, particularly the limited understanding of TRG migration pathways and their impact mechanisms. Future research should focus on revealing the migration mechanisms of TRGs in soil plant systems and developing effective control and governance measures to reduce the environmental transmission risks of TRGs and ensure the safety of ecosystems and human health. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF