1. Giant sponge grounds of Central Arctic seamounts are associated with extinct seep life.
- Author
-
Morganti, T. M., Slaby, B. M., de Kluijver, A., Busch, K., Hentschel, U., Middelburg, J. J., Grotheer, H., Mollenhauer, G., Dannheim, J., Rapp, H. T., Purser, A., and Boetius, A.
- Subjects
DISSOLVED organic matter ,SEAMOUNTS ,SEA ice ,FATTY acids ,ORGANIC compounds ,SHORT selling (Securities) - Abstract
The Central Arctic Ocean is one of the most oligotrophic oceans on Earth because of its sea-ice cover and short productive season. Nonetheless, across the peaks of extinct volcanic seamounts of the Langseth Ridge (87°N, 61°E), we observe a surprisingly dense benthic biomass. Bacteriosponges are the most abundant fauna within this community, with a mass of 460 g C m
−2 and an estimated carbon demand of around 110 g C m−2 yr−1 , despite export fluxes from regional primary productivity only sufficient to provide <1% of this required carbon. Observed sponge distribution, bulk and compound-specific isotope data of fatty acids suggest that the sponge microbiome taps into refractory dissolved and particulate organic matter, including remnants of an extinct seep community. The metabolic profile of bacteriosponge fatty acids and expressed genes indicate that autotrophic symbionts contribute significantly to carbon assimilation. We suggest that this hotspot ecosystem is unique to the Central Arctic and associated with extinct seep biota, once fueled by degassing of the volcanic mounts. This study reports the discovery of dense sponge gardens across the peaks of permanently ice-covered, extinct volcanic seamounts of the Langseth Ridge and on the remnants of a now extinct seep ecosystem. Using approaches to sample and infer food and energy sources to this ice-covered community, the authors suggest that the sponges use refractory organic matter trapped in the extinct seep community on which they sit. [ABSTRACT FROM AUTHOR]- Published
- 2022
- Full Text
- View/download PDF