Sehl, Olivia C., Yang, Yanwen, Anjier, Ariana R, Nevozhay, Dmitry, Cheng, Donghang, Guo, Kelvin, Fellows, Benjamin, Mohtasebzadeh, Abdul Rahman, Mason, Erica E., Sanders, Toby, Kim, Petrina, Trease, David, Koul, Dimpy, Goodwill, Patrick W., Sokolov, Konstantin, Wintermark, Max, Gordon, Nancy, Greve, Joan M., and Gopalakrishnan, Vidya
Purpose: Clinical adoption of NK cell immunotherapy is underway for medulloblastoma and osteosarcoma, however there is currently little feedback on cell fate after administration. We propose magnetic particle imaging (MPI) may have applications for the quantitative detection of NK cells.Human-derived NK-92 cells were labeled by co-incubation with iron oxide nanoparticles (VivoTrax™) for 24 h then excess nanoparticles were washed with centrifugation. Cytolytic activity of labeled versus unlabeled NK-92 cells was assessed after 4 h of co-incubation with medulloblastoma cells (DAOY) or osteosarcoma cells (LM7 or OS17). Labeled NK-92 cells at two different doses (0.5 or 1 × 106) were administered to excised mouse brains (cerebellum), fibulas, and lungs then imaged by 3D preclinical MPI (MOMENTUM™) for detection relative to fiducial markers. NK-92 cells were also imaged by clinical-scale MPI under development at Magnetic Insight Inc.NK-92 cells were labeled with an average of 3.17 pg Fe/cell with no measurable effects on cell viability or cytolytic activity against 3 tumor cell lines. MPI signal was directly quantitative with the number of labeled NK-92 cells, with preclinical limit of detection of 3.1 × 104 cells on MOMENTUM imager. Labeled NK-92 cells could be accurately localized in mouse brains, fibulas, and lungs within < 1 mm of stereotactic injection coordinates with preclinical scanner. Feasibility for detection on a clinical-scale MPI scanner was demonstrated using 4 × 107 labeled NK-92 cells, which is in the range of NK cell doses administered in our previous clinical trial.MPI can provide sensitive, quantitative, and accurate spatial information on NK cells soon after delivery, showing initial promise to address a significant unmet clinical need to track NK cell fate in patients.Procedures: Clinical adoption of NK cell immunotherapy is underway for medulloblastoma and osteosarcoma, however there is currently little feedback on cell fate after administration. We propose magnetic particle imaging (MPI) may have applications for the quantitative detection of NK cells.Human-derived NK-92 cells were labeled by co-incubation with iron oxide nanoparticles (VivoTrax™) for 24 h then excess nanoparticles were washed with centrifugation. Cytolytic activity of labeled versus unlabeled NK-92 cells was assessed after 4 h of co-incubation with medulloblastoma cells (DAOY) or osteosarcoma cells (LM7 or OS17). Labeled NK-92 cells at two different doses (0.5 or 1 × 106) were administered to excised mouse brains (cerebellum), fibulas, and lungs then imaged by 3D preclinical MPI (MOMENTUM™) for detection relative to fiducial markers. NK-92 cells were also imaged by clinical-scale MPI under development at Magnetic Insight Inc.NK-92 cells were labeled with an average of 3.17 pg Fe/cell with no measurable effects on cell viability or cytolytic activity against 3 tumor cell lines. MPI signal was directly quantitative with the number of labeled NK-92 cells, with preclinical limit of detection of 3.1 × 104 cells on MOMENTUM imager. Labeled NK-92 cells could be accurately localized in mouse brains, fibulas, and lungs within < 1 mm of stereotactic injection coordinates with preclinical scanner. Feasibility for detection on a clinical-scale MPI scanner was demonstrated using 4 × 107 labeled NK-92 cells, which is in the range of NK cell doses administered in our previous clinical trial.MPI can provide sensitive, quantitative, and accurate spatial information on NK cells soon after delivery, showing initial promise to address a significant unmet clinical need to track NK cell fate in patients.Results: Clinical adoption of NK cell immunotherapy is underway for medulloblastoma and osteosarcoma, however there is currently little feedback on cell fate after administration. We propose magnetic particle imaging (MPI) may have applications for the quantitative detection of NK cells.Human-derived NK-92 cells were labeled by co-incubation with iron oxide nanoparticles (VivoTrax™) for 24 h then excess nanoparticles were washed with centrifugation. Cytolytic activity of labeled versus unlabeled NK-92 cells was assessed after 4 h of co-incubation with medulloblastoma cells (DAOY) or osteosarcoma cells (LM7 or OS17). Labeled NK-92 cells at two different doses (0.5 or 1 × 106) were administered to excised mouse brains (cerebellum), fibulas, and lungs then imaged by 3D preclinical MPI (MOMENTUM™) for detection relative to fiducial markers. NK-92 cells were also imaged by clinical-scale MPI under development at Magnetic Insight Inc.NK-92 cells were labeled with an average of 3.17 pg Fe/cell with no measurable effects on cell viability or cytolytic activity against 3 tumor cell lines. MPI signal was directly quantitative with the number of labeled NK-92 cells, with preclinical limit of detection of 3.1 × 104 cells on MOMENTUM imager. Labeled NK-92 cells could be accurately localized in mouse brains, fibulas, and lungs within < 1 mm of stereotactic injection coordinates with preclinical scanner. Feasibility for detection on a clinical-scale MPI scanner was demonstrated using 4 × 107 labeled NK-92 cells, which is in the range of NK cell doses administered in our previous clinical trial.MPI can provide sensitive, quantitative, and accurate spatial information on NK cells soon after delivery, showing initial promise to address a significant unmet clinical need to track NK cell fate in patients.Conclusion: Clinical adoption of NK cell immunotherapy is underway for medulloblastoma and osteosarcoma, however there is currently little feedback on cell fate after administration. We propose magnetic particle imaging (MPI) may have applications for the quantitative detection of NK cells.Human-derived NK-92 cells were labeled by co-incubation with iron oxide nanoparticles (VivoTrax™) for 24 h then excess nanoparticles were washed with centrifugation. Cytolytic activity of labeled versus unlabeled NK-92 cells was assessed after 4 h of co-incubation with medulloblastoma cells (DAOY) or osteosarcoma cells (LM7 or OS17). Labeled NK-92 cells at two different doses (0.5 or 1 × 106) were administered to excised mouse brains (cerebellum), fibulas, and lungs then imaged by 3D preclinical MPI (MOMENTUM™) for detection relative to fiducial markers. NK-92 cells were also imaged by clinical-scale MPI under development at Magnetic Insight Inc.NK-92 cells were labeled with an average of 3.17 pg Fe/cell with no measurable effects on cell viability or cytolytic activity against 3 tumor cell lines. MPI signal was directly quantitative with the number of labeled NK-92 cells, with preclinical limit of detection of 3.1 × 104 cells on MOMENTUM imager. Labeled NK-92 cells could be accurately localized in mouse brains, fibulas, and lungs within < 1 mm of stereotactic injection coordinates with preclinical scanner. Feasibility for detection on a clinical-scale MPI scanner was demonstrated using 4 × 107 labeled NK-92 cells, which is in the range of NK cell doses administered in our previous clinical trial.MPI can provide sensitive, quantitative, and accurate spatial information on NK cells soon after delivery, showing initial promise to address a significant unmet clinical need to track NK cell fate in patients. [ABSTRACT FROM AUTHOR]